Runtime Refinement Checking of
Concurrent Data Structures

Serdar Tasiran

Kog¢ University, Istanbul, Turkey

Shaz Qadeer

Microsoft Research, USA

Abstract

We present a runtime technique for checking that a concurrent implementation of a
data structure conforms to a high-level executable specification with atomic opera-
tions. The technique consists of two phases. In the first phase, the implementation
code is instrumented in order to record information about its execution into a log.
In the second phase, a verification thread runs concurrently with the implementa-
tion and uses the logged information to check that the execution conforms to the
high-level specification. We pay special attention to reducing the impact of the
runtime analysis on the concurrency characteristics and performance of the imple-
mentation. We are currently applying our technique to Boxwood [1], a distributed
implementation of a B-link tree data structure.

Key words: Runtime verification, concurrent data structures,
refinement, atomicity

1 Introduction

For data structure implementations that can be accessed by concurrent ap-
plication threads, verifying refinement with respect to a high-level executable
specification is more thorough than property verification alone. In this work,
we present a technique for checking refinement at runtime.

Proving refinement using static techniques requires reasoning about the en-
tire state space of the implementation. Traversing every implementation state
is infeasible or impossible for most non-trivial systems. To apply theorem-
proving techniques to refinement proofs, one must devise and prove a rep-
resentation invariant about the program state. These are tedious and com-
putationally costly tasks. Furthermore, when modifications are made to an
implementation during its development, invariants may need to be modified

and re-proven as well. As a result, for practical programs, it is not feasible to
check refinement statically.

Compositional methods have been explored to divide refinement checks
into smaller, computationally managable subproblems. While there is well-
studied theory for compositional reasoning, modular proofs of refinement are
difficult to carry out in practice. When applying a verification tool on a
component of a design, an abstract model of the component’s environment
needs to be devised and verified. Such environment assumptions and interface
specifications may not have been made explicit in the design description, and
thus may need to be guessed and verified. Furthermore, coordination of proof
sub-tasks as the program evolves is difficult and error-prone.

Checking refinement during runtime reduces both the computational and
the human effort required. The computational effort is reduced simply be-
cause, instead of the entire state-space, only the states along execution paths
of test cases are examined. The human effort required for verifying a compo-
nent of a design is reduced because the component is run as part of the actual
program implementation and all executions are naturally legal executions of
the component’s environment. Thus, there is no need to devise or verify an
environment model, i.e., a test stub for the component. These advantages
have motivated us to investigate runtime refinement checking as a verification
paradigm.

We use state transition systems to give semantics to the implementations
and specifications of concurrent data structures. Section 2 formalizes state
transition systems and our notion of refinement. We illustrate our runtime
verification technique on a concurrent implementation of a multiset described
in Section 3. Sections 4 and 5 present our technique for checking refinement
at runtime. We discuss related work in Section 6 and conclude in Section 7.

2 Preliminaries

2.1 State transition systems

We focus on concurrently accessible implementations of data structures writ-
ten in object-oriented languages. The data structure makes available a number
of operations each of which is implemented as a method. When it is necessary
to distinguish these methods from methods only internally accessible by the
data structure, we refer to them as public methods. Several application threads
can issue calls to methods concurrently and portions of method executions can
be interleaved for better performance. Throughout this paper, the domain T%d
represents the set of thread identifiers. Tid is the union of two disjoint sets,
Tid gy, and Tidgs. The set Tid,,, contains identifiers of applications threads
that call the public methods provided by the data structure. The set Tidgy,
contains identifiers of worker threads in the implementation used to perform
tasks internal to the data structure.

149

We use state transition systems as the formal semantics of programs. For-
mally, a state transition system is a tuple (V, S, sq,0):

e V is the set of program wvariables. These variables include, for example,
the heap-allocated data shared among the threads as well the thread-local
stacks, one for each thread.

o S is the set of states. Each state is an assignment of a value (of the correct
type) to each variable in V.

* 5o € S is the initial state.

e) is the transition function from S x Actions to S, where Actions is the
set of actions that the system can perform. If d(s,a) = ', the transition
system may perform the action a in state s to change the state to s’. We
denote such a transition by s —— s

A run of the state transition system is a finite sequence r = sy —= s —
. 25 s, for some n > 0 such that s; —— s;,1 for all 0 < i < n.

The set Actions consists of wvisible and invisible actions. Actions corre-
sponding to calls and returns of public methods are required to be visible
actions. A call action is a tuple (t, Call, name, args), where t is the identifier
of the thread performing the method call, name is the name of the invoked
public method, and args is the list of method arguments. A return action is a
tuple (¢, Return, name, rets), where ¢ is the identifier of the thread performing
the method return, name is the name of the returning public method, and rets
is the list of values returned by the method. Given a run r of the state tran-
sition system, the trace corresponding to r is the sequence of visible actions
that take place during that run.

A sequence of call and return actions by an application thread t is well-
formed if it satisfies the following three properties:

(1) The first action is a call action.

(2) Every call action (¢, Call, name, args) must be followed by a return action
(t, Return, name, rets).

(3) If the return action (¢, Return, name, rets) is not the last action in the se-
quence, it must be followed by a call action (¢, Call, name’, args’).

A trace 7 is well-formed if for every application thread ¢, the subsequence of
7 corresponding to actions of thread t is well-formed. A run is well-formed
if its corresponding trace is well-formed. In this paper, we restrict our anal-
ysis to well-formed runs of state transition systems. The sequence of actions
associated with a thread ¢ and lying between the call and return action for a
public method is called an ezecution of that method.

A well-formed run is atomic if after every call action (¢, Call, name, args) to
a public method name by an application thread ¢, no thread other than thread
t performs an action until the corresponding return action (¢, Return, name, rets)
has occurred. Thus, every atomic run is a concatenation of fragments of the

150

run, such that only one application thread performs actions in any particular
fragment. Each fragment begins with a call action by an application thread ¢
and ends with the corresponding return action by thread ¢. A state transition
system is atomic if all of its runs are atomic.

The call action at the beginning and the return action at the end of a
fragment form the signature of the fragment. An atomic state transition
system is deterministic if whenever two fragments of any two runs have the
same first state and the same signature, they have the same last state as well.
Thus, every trace of an atomic and deterministic state transition system is
produced by a unique run.

2.2 Refinement between state transition systems

Let the implementation of a concurrent data structure be given by the state
transition system Z = (VZ,S%, sZ, %), and the specification be given by the
state transition system S = (V5,59 s§,8%). For a trace 7 and a thread t,
let 7|; denote the projection of 7 onto actions associated with thread ¢. The
transition system Z refines S if for every trace 7 of Z, there is a trace 7’ of S
such that 7|, = 7'|; for all t € Tid,).

Note that the definition of refinement depends on the set of actions of the
state transition system chosen to be visible. In our notion of refinement, called
I/0 refinement, call and return actions are the only visible actions. Intuitively,
this definition of refinement expresses the requirement that the return values
of method calls be consistent with those in some (atomic) execution of the
specification. Of course, we could make more actions of the implementation
visible and require them to be matched against corresponding actions in the
specification. A larger set of visible actions will result in more extensive run-
time checking than that allowed by I/O refinement. Section 5 describes one
such choice of visible actions that we have found useful in practice.

3 Example

We will use a multiset data structure as our running example throughout the
paper. In this section, we give the specification and implementation of the
multiset. The multiset data structure supports two operations:

 INSERTPAIR(x,y) to insert the elements x and y into the multiset.
e LookUP(x) to check if x is an element of the multiset.

The specifications of these operations are presented in Figure 1 where M is a
state variable that represents the multiset contents. Any invocation of the
INSERTPAIR operation is allowed to fail or succeed. The specification nonde-
terministically makes this choice, and updates the specification state accord-
ingly. The nondeterministic choice is made visible via the return value of the
method.

151

INSERTPAIR(%, y) LookUP(x)

1 status « success or failure 1 return (x € M)
2 if status = success

3 M—MU{x,y}

4 return status

Fig. 1. The specification of the multiset operations

The following multiset implementation uses an array A[1..n] to store the
multiset elements. Each array element has two fields:

e A[i] .content is the multiset element stored in A[i]. It has value null if
no element is stored at location 1i.

* A Boolean variable A[i] .valid indicates whether the element in position
i is valid.

Initially, A[i].content = null and A[i].valid = false for all i. The implemen-

tation makes use of an array of locks L[1..n], where lock L[i] protects the

contents of A[i].

The implementation of the multiset uses a subroutine FINDSLOT (Fig-
ure 2), which looks for an available slot in the array for a single element x. If
FINDSLOT finds an available slot, it reserves it by setting its content to x and
returns its index. If no slot is available, it returns 0.

FINDSLOT(x)
fori— 1ton
AcQuirg(L[i])
if (A[i].content = null)
A[i] .content « x
RELEASE(L[i])
return i
else
RELEASE(L[i])
return 0

© 00 1O Ul Wi

Fig. 2. The implementation of the FINDSLOT subroutine

The implementation of INSERTPAIR (Figure 3) uses two calls to FINDSLOT
to allocate slots in the array A for x and y. If either of the calls fail, INSERTPAIR
returns failure and frees up any slots it may have reserved. Otherwise, it
acquires the locks protecting the allocated slots, sets the valid fields of those
slots to true, and returns success.

The implementation of LOOKUP (Figure 3) is straightforward. The fact
that LOOKUP acquires the lock for each array entry before it accesses the
data makes sure that LOOKUP does not access data only partially modified
by an INSERTPAIR operation. The multiset implementation 1/O refines its
specification. An argument for this fact is provided in Section 4.1 and made

152

INSERTPAIR(x,y) LookUp(x)

1 i «— FINDSLOT(x) 1 fori < 1ton

2 if (i = 0) 2 AcQuIRE(L[i])

3 return failure 3 if (A[i].valid and
4 j < FINDSLOT(y) 4 A[i].content = x)
5 if (j =0) 5 RELEASE(L[i])
6 A[i] .content « null 6 return true

7 return failure 7 else

8 AcQuiRg(L[i]) 8 RELEASE(L[i])

9 AcqQuirg(L[j]) 9 return false

10 A[i] .valid « true

11 A[j].valid « true

12 RELEASE(L[i])

13 RELEASE(L[j])

14 return success

Fig. 3. The implementation of the multiset operations

precise in the Appendix.

4 Runtime refinement checking

In this section, we present a method for checking at runtime that a non-atomic
implementation Z refines a deterministic, atomic specification §. Suppose we
have a well-formed run r of Z. Let 7 be the trace corresponding to the run r
and 7|; denote the projection of 7 onto the actions of an application thread
t. For each such thread identifier ¢, the sequence 7|, is a sequence of pairs of
actions, where each pair consists of a call action (¢, Call, name, args) followed
by a return action (¢, Return, name, rets).

The most straightforward method for checking refinement is to construct
all possible atomic interleavings of the sequences in {7|, | t € Tid}, and for
each interleaving check whether it is a trace of §. If one of these interleavings
is found to be a trace of S, then we have found a run of § matching r. Such
an interleaving is called a witness to the refinement. It is straightforward
to check whether an atomic interleaving is a trace of §. Since S is atomic
and deterministic, each of its traces corresponds to a unique run. We simply
execute the specification one method call at a time in the order given by the
interleaving, looking for the unique run whose trace matches the interleaving.
If, as in Figure 1, there is a nondeterministic choice in the return value for
a method, the choice is made to conform with the return action specified in
the interleaving. If at any point, it is not possible to execute the specification
while conforming to the return action, the refinement check is said to fail.

To check refinement for a run r, the number of possible interleavings that
might need to be evaluated increases very rapidly with the number of applica-
tion threads and the number of method calls (and returns) performed by each

153

thread. Thus, it is impractical to check all possible interleavings. To overcome
this problem, we infer a witness interleaving from the run itself. We require
that the programmer introduce a small number of extra annotations in the
program. How these annotations are used to infer the witness interleaving is
explained in Section 4.1.

We stress that this notion of a witness interleaving is essential for testing
concurrent data structures effectively. In the absence of a witness interleaving,
to decide whether a method’s return value or the final state of a multi-threaded
test program is consistent with the specification, one is forced to either consider
all possible interleavings or be overly permissive.

4.1 Commit actions

A thread performs a number of actions during its execution of a method, be-
ginning with a call action and ending with a return action. To derive a witness
interleaving from a run of the implementation, we require the programmer to
designate a single action within each such execution of a method as the com-
mit action. The ordering of these commit actions, one for each method call
by a thread, gives us the witness interleaving. In practice, commit actions
are specified by designating certain lines in the implementation code to be
commit points. When one of these lines is executed, the corresponding ac-
tion is marked as the commit action. Any line in the implementation can
be a commit point. However, the programmer must make sure that for each
method, exactly one of these lines is executed for every execution path through
the method. Intuitively, the order of the commit actions in time is meant to
coincide with the application’s view of how the state of the data structure
transforms over time. In other words, the process of selecting the commit
actions can be seen as a simplified way of constructing an abstraction map
that relates the implementation to the specification.

Intuitively, the commit point of an execution of a method by a thread is the
first line whose execution changes the view of the data structure afforded to the
other threads. In the multiset implementation of Section 3, the commit point
in an execution of the INSERTPAIR method that returns success is line 12.
Suppose an application thread t is executing the INSERTPAIR method and
that this execution is going to succeed. Let p and ¢ be the locations where
thread t is going to insert x and y respectively. Another thread ¢’ can access
Alp] and A[q] either (1) before thread ¢ executes line 12, or (2) after thread
t executes line 12. Consider the first case. Thread ¢ holds the locks L[p]
and L[q] while it sets A[p].valid and A[q].valid to true. Therefore, if
thread ¢’ reads the valid bits before thread ¢ executes line 12, it must see
them as false. Consequently, thread ¢’ cannot see either x or y as having been
inserted into the multiset. Consider the second case. Since A[p].content = x,
Alg].content = y, and A[p] .valid and Al[q] .valid are true, thread ¢’ sees
both x and y as having been inserted into the multiset.

154

Observe that, for the INSERTPAIR method, the method call action, the
commit action and the return action may have an arbitrary number of inter-
leaved actions by other application threads separating them. Thus, a witness
interleaving based on the ordering of method call or return transactions would
be in error. A complete proof, based on commit actions, of the fact that the
multiset implementation 1/O refines its specification is provided in the Ap-
pendix.

The runtime refinement check described could fail either because the im-
plementation truly does not refine the implementation or because the witness
interleaving obtained using the commit actions is wrong. Comparing the wit-
ness interleaving with the implementation trace reveals which one of these is
the case.

Annotating the implementation with commit points is extra effort for the
programmer. The reward for this effort is the capability to perform runtime
checking of refinement efficiently. In addition, the process of analyzing the
implementation using these terms may itself expose design flaws and result in
a better design, even before runtime verification is used. Our experience with
two practical designs, the Scan filesystem [8] and Boxwood distributed B-tree
implementation [1] confirms this observation.

4.2 Off-line refinement checking using a log

It is desirable for a runtime verification tool not to modify the concurrency
characteristics of the implementation significantly. This could happen if the
verification method introduces a large amount of instrumentation code and
computation overhead or application and data structure threads need to con-
tend with each other for access to instrumentation data structures. At the
very least, during runtime refinement checking, the implementation’s progress
should not be blocked while waiting for the verification code. To interfere min-
imally with the implementation, we run the verification as a separate thread
which is informed about the implementation’s actions through a log. The
implementation threads write entries to the log as they run; the verification
thread reads these entries and performs refinement checking. In its simplest
form, the entries of the log used in refinement checking are the following ac-
tions of the state transition system.

e The call action for each method invoked by a thread.
e The return action for each method completed by a thread.

e The commit action for each method invoked and completed by a thread.

The actions appear in the log in the order in which they are executed by the
implementation. One way to achieve this is to require that each logged action
be performed atomically with the corresponding log update. A relaxation
of this requirement is described in Section 5.1. The threads use a lock to
synchronize access to the log. Each read or write to the log takes a small

155

amount of time. Consequently, the lock is held by each thread only for a
short duration and the impact of lock acquire operation on the concurrency
characteristics of the implementation is minimal.

Many concurrent data structures used in distributed systems, such as the
Boxwood project[1], implement similar logs to restore system state reliably in
case of a crash. With some modifications, the logging mechanisms in such sys-
tems can be reused for the purpose of verification. Further, the fact that such
systems tolerate the interference caused by a logging mechanism for recovery
is evidence that the impact of logging for the purpose of verification may also
be tolerable.

5 Improving I/O refinement

The coverage accomplished by runtime verification based on 1/O refinement is
particularly sensitive to the sequence of method calls performed by the threads
in the test program. As an extreme example, consider a test program for the
multiset of Section 3 that only calls the method INSERTPAIR and never calls
LookUp. Since the specification of INSERTPAIR allows both success and
failure as return values, the runtime checks for I/O refinement would pass
trivially. For useful checking, the test program must perform a number of
calls to LookKUP. But introducing a large number of calls to LOOKUP might
not be desirable, as the concurrency characteristics of the program under this
workload may be significantly different from regular use. Even if the test
program did perform calls to LOOKUP, these calls may not get scheduled at
the most interesting points in the execution. I/O refinement as a correctness
criterion is thorough enough for static checking but needs to be strenghtened
for runtime checking.

In this section, we augment the correctness criterion of I/O refinement to
enable more thorough runtime verification of concurrent data structures. The
fundamental idea is to introduce an auxiliary variable view and specify how
the implementation and the specification of the data structure update it. The
implementation itself is not actually modified. Instead, the verification thread
constructs what would have been the value of view in the implementation
using information from the log as explained in Section 5.1. Intuitively, the
value of view captures a partial view of the data structure — a view that is
updated atomically and on which the value returned by the method depends.
view is supposed to abstract away information that is not relevant to an
application’s view of the data structure state. For example, for a hash table,
view might be the set of key-value pairs while the hash function itself is
abstracted away.

The variable view is initialized to the same value in both the implemen-
tation and the specification. In the implementation, it is updated once atom-
ically by each method at its commit point. In the specification, it is updated
once atomically anytime between the call and return of each method. During

156

runtime verification, we now also check that both the implementation and
the specification perform the same sequence of updates to view. Formally,
we make the commit action a new visible action, and annotate it with the
information about how view is updated.

We now illustrate this method on the multiset example. We select the
variable view to be the specification variable M itself. Since no new vari-
able is introduced into the specification, the specification of INSERTPAIR and
LookUP remain unchanged. The following code indicates how M is to be
updated at each commit point in the implementation.

do_atomically {
M« ()
for i1 ton
lockOK = (L[i] not held by any thread) or
(L[i] held by thread currently committing) or
(L[i] held by a thread executing a LOOKUP)
if (A[i].valid and lockOK)
M« MU {A[i].content}

Fig. 4. The computation of view for the multiset implementation

Observe that lock acquisitions and releases must also be logged to compute
view in this case. With the addition of the auxiliary variable M to the imple-
mentation, we get useful checking even with a test program that has no calls
to LOOKUP. Now the refinement checking ensures that the implementation
updates M in the same fashion as the specification. Note that the return value
of any LOOKUP operation is uniquely determined by the value of M at the
commit point of that particular invocation of LOOKUP. Therefore, after a
successful refinement check, we are guaranteed that had the test program had
calls to LOOKUP, those calls would have returned the correct result.

This stronger correctness criterion is more likely to expose errors and pro-
vide early warnings as the following example demonstrates. Consider a version
of the multiset data structure that also supports a REMOVE operation. Sup-
pose that a thread in the test program inserts an element a into the multiset
twice, but, because of an error in the implementation, only the first a gets
inserted into the array A. To expose the error through testing or I/O refine-
ment checking alone, we need an execution that inserts a twice, followed by
a removal of a, followed by a lookup of a. The probability of generating such
an execution would be low. Even if such a test scenario were exercised, if the
insert operations, the remove operation, and the lookup operation were sepa-
rated from each other by large number of other method calls, then it would be
difficult to locate the soucrce of the discrepancy. The use of M in the multiset
will detect this error immediately after the attempt to insert the second copy
of a.

To see how a definition of view other than the entire specification might

157

be useful, consider a specification for the multiset written as a binary search
tree with atomic operations. The computation of view for this specification
would traverse the tree and insert the elements at the nodes into the multiset
represented by view. In this scenarion, view is used as a device to extract a
canonical representation of the data structure state from the specification as
well as the implementation. Such a device is useful if the specification itself
contains detail in addition to the abstract view of the data structure state.
Additional detail of this kind may make writing a specification easier. For
instance, in the B-link data structure implemented by Boxwood, an indexing
structure is needed to be able to update the data stored in the specification
state. However, the indexing structure is not part of the abstract view of the
data structure state.

5.1 Logging information to compute view

Computing the value of M in the multiset implementation requires an atomic
snapshot of the contents of the entire array A. Achieving an atomic snapshot
of the array in the presence of concurrency is difficult. The naive approach of
acquiring all locks L[1] to L[n] would be very costly and in addition would
radically change the concurency characteristics of the implementation. We
use the log to solve the problem of taking this atomic snapshot as well. Sup-
pose the set of program variables that influence the computation of view is
supp(view). In addition to recording method call and return actions and com-
mit actions, we also insert an entry into the log recording each update to a
variable in supp(view). The set supp(view) can be computed by a simple
static analysis of the code for updating view.

Intrumentation of the updates to implementation variables introduces more
computational overhead and possibly effects the concurrency characteristics
of the implementation more than checking I/O refinement only. For this rea-
son, it may be necessary to perform performance optimizations in the logging
process. For instance, if it can be proven that inside the body of a method a
code block has exclusive modify access to a set of variables V| then the entire
update to the set can be written as a single entry to the log. In the actual
execution, other updates to other implementation variables may have been in-
terleaved with updates to V. However, the exclusive modify access guarantees
that the interleaving does not interfere with the modifications entered into the
log. In particular, at each commit point, the values of the variables obtained
using this logging method are the same as they would have been without this
optimization.

6 Related work

Checking refinement as a verification approach is well-studied (See [2,9] among
many others). Runtime checking of conformance to a state invariant derived

158

from an object model has been investigated [4]. Runtime checking of property
annotations inserted into implementation code has been studied [3]. Runtime
analysis methods for correctness criteria such as atomicity have been devel-
oped [5,11]. Refinement checking has recently been integrated with simulation-
based validation of hardware designs [10]. Our work is the first attempt to
check refinement of an executable, algorithm-level specification of a data struc-
ture at runtime.

In the following section, we contrast our notion of refinement with two
well-known correctness criteria for concurrent systems.

6.1 Comparison with atomicity and linearizability

Many correctness criteria for concurrent systems (e.g., atomicity in the work
of Flanagan and Qadeer [6] and Wang and Stoller [11], linearizability in the
work of Herlihy and Wing [7]) require that non-atomic (interleaved) executions
of the implementation be “equivalent” to an atomic, sequential run of the
implementation. The definition of equivalence used in these criteria does not
make reference to the specification for the system.

I/O refinement is different from these criteria in that it does not require
the existence of such an atomic, sequential run. Therefore, we believe that it
rules out fewer potentially useful implementations. Evidence for this belief is
provided by the following claim.

Claim 6.1 The implementation of the multiset data structure in Section 3

(i) is not atomic according to the definition in [6], and

(ii) s not linearizable according to the definition in [7].

Proof.

(i) We provide an execution of the implementation that is not atomic, i.e.,
cannot be transformed to an atomic run by swapping left and right movers
with other actions when appropriate. Consider a multiset implementa-
tion and two threads, t; and t5. Thread t; performs the single method
call INSERTPAIR(1,2) and thread t, performs the single method call IN-
SERTPAIR(3,4). For the purpose of illustration, let us divide the code
for the implementation of the INSERTPAIR method into three parts I,
(lines 1-3), I (lines 4-7), and I3 (lines 8-14). Consider the interleaving
of threads in Figure i.

Time| 1 2 3 4 5 6
t1 I L, I
to I, I, I,

Fig. 5. Interleaving example for Claim 6.1 part (i)

159

Invocation of Iy by threads t; and t5 acquires and releases the same set
of locks. Hence it is not possible to reorder the execution of I; by thread
t; with the execution of I; by t;. Therefore, it is not possible to obtain
an atomic run from this sequence by applying reordrering operations.

(ii) We provide an execution of the multiset implementation that is not lin-
earizable. Consider an implementation with an array A of size two, and
two application threads t; and t5, concurrently invoking the INSERTPAIR
method. For the following interleaving of threads, both calls to INSERT-
PAIR fail.

Time | 1 2 3 4

tl Il 12

12 I I,

Fig. 6. Interleaving example for Claim 6.1 part (ii)

The first call to FINDSLOT by each thread succeeds. At this point, both
slots in the array A[1..2] are taken and subsequent calls to FINDSLOT
by each thread return 0. As a result, both calls to INSERTPAIR fail.

In a linearized execution of the implementation, the first invocation of
INSERTPAIR always succeeds. As a result, the execution of the imple-
mentation depicted above is not equivalent to any sequential execution
of the implementation, which proves that this multiset implementation
is not linearizable.

O

If an implementation Z is linearizable and is a correct implementation of
a specification S as defined in [7], then Z I/O refines S. For non-linearizable
executions, the verification condition in [7] becomes vacuous.

7 Discussion

Run-time checking of refinement promises to be a powerful verification ap-
proach with reasonable computational cost. In this paper, we investigated
two notions of refinement and techniques for checking them. We are in the
process of applying these techniques to an industrial software design.

The effort required for writing formal specifications has been a barrier in
the way of widespread application of refinement-based verification methods,
and the capacity limits of formal verification tools have not provided enough
of an incentive for overcoming this barrier. To be able to apply run-time re-
finement checking to systems without formal specifications, we observe that
a non-concurrent version of the implementation can serve as a determinis-
tic specification, with minor modifications. A non-concurrent version of an
implementation can, for instance, be obtained by making all data structure

160

operations synchronized. A specification obtained in this manner may need
to be made more permissive, i.e., the preconditions that enable a method to
return a particular value may need to be relaxed. For instance, to obtain
a specification from the implementation of the multi-set in Example 3, the
specification for INSERTPAIR must allow the method to return “failure” even
when there is space in the array for the method to succeed. Also, whenever
more than one return value is possible for a method, the synchronized version
of the method must be written in such a way that, given the return value, it
updates the data structure state exactly as the original implementation would
have for that particular return value. We believe that the possibility of using a
modified version of the implementation itself as a first specification may make
refinement checking more easily applicable to data structures.

Acknowledgments

We thank Chandu Thekkath and Lidong Zhou for support with and discus-
sions about Boxwood, Jim Larus and Roy Levin for making our collaboration
possible, and Martin Abadi for enlightening discussions. We also thank Min-
wen Ji and Andrej Bogdanov for collaboration on the verification of the Scan
file system.

References

[1] http://research.microsoft.com/research/sv/Boxwood.

[2] M. Abadi and L. Lamport. The existence of refinement mappings. In
Proceedings of the Third Annual Symposium on Logic in Computer Science,
pages 165-175. IEEE Computer Society Press, 1988.

[3] F. Chen and G. Rosu. Towards monitoring-oriented programming: A
paradigm combining specification and implementation. In O. Sokolsky and
M. Viswanathan, editors, Electronic Notes in Theoretical Computer Science,
volume 89. Elsevier, 2003.

[4] M. L. Crane and J. Dingel. Runtime conformance checking of objects using
Alloy. In O. Sokolsky and M. Viswanathan, editors, Electronic Notes in
Theoretical Computer Science, volume 89. Elsevier, 2003.

[5] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity checker for
multithreaded programs. In Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 256-267, 2004.

[6] C. Flanagan and S. Qadeer. Types for atomicity. In Proceedings of the 2003
ACM SIGPLAN International Workshop on Types in Language Design and
Implementation, pages 1-12. ACM Press, 2003.

161

[7] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages and
Systems, 12(3):463-492, 1990.

[8] M. Ji and E. Felten. Scan-based scheduling and layout in a reliable write-
optimized file system. Technical Report TR-661-02, Princeton University,
Department of Computer Science, 2002.

[9] S. Park and D. L. Dill. Verification of cache coherence protocols by aggregation
of distributed transactions. Theory of Computing Systems, 31(4):355-376, 1998.

[10] S. Tasiran, Y. Yu, and B. Batson. Using a formal specification and a model
checker to monitor and guide simulation. In Proceedings of the 40th Design
Automation Conference, pages 356-361. ACM, 2003.

[11] L. Wang and S. D. Stoller. Run-time analysis for atomicity. In O. Sokolsky and
M. Viswanathan, editors, Electronic Notes in Theoretical Computer Science,
volume 89. Elsevier, 2003.

Appendix

Claim 7.1 The implementation of the multiset in Section 3 1/0 refines its
specification.

Proof. Given an execution of the implementation, let us define a commit
action for each method call. For calls to INSERTPAIR that succeed, the commit
action corresponds to line 12. For calls to INSERTPAIR that fail, we define
the commit action to be the call action to INSERTPAIR. In this latter case,
there are many other possible choices since failing calls to INSERTPAIR do not
modify the data structure state.

For calls to LOOKUP, we define the commit action as follows:

* For calls that return true the commit action corresponds to line 5 of LOOKUP
gets executed.

e For calls that return false, the commit action is the call action.

Let p1, o, ..., j1, be the sequence of method calls ordered according to their
commit points in time. Let v; be the return value of y; in the actual execution
of the implementation. We must prove that the return values of methods in
the multiset implementation are consistent with what the specification dictates
given this particular witness interleaving of method calls.

The argument for calls to INSERTPAIR is easy to make, since each call to
INSERTPAIR is allowed to return success or failure independently from the
specification state. Return values for LOOKUP are more interesting. Let us
suppose that py is LOOKUP(x). There are two possible cases.

* LooKUP(x) returns true. We need to prove that there was a call to IN-
SERTPAIR that committed earlier, had a return value of success and had x
as one of its arguments.

162

LookUpP(x) returns true only when it finds i such that A[i] .valid is
true and A[i].content = x. It also acquires lock L[i] before it checks
for these conditions. Only INSERTPAIR contains lines that can have set
A[i].valid to true. Let us denote by . the last (and, in fact, only)
invocation of INSERTPAIR that set A[i].valid to true. It follows from the
code for INSERTPAIR and LOOKUP that A[i].valid is never set to false
and A[i] .content never gets modified afterwards. By the definition of .,
1 is able to acquire the lock L[i] only after u., executes line 12 and releases
L[i]. This proves that u.’s commit action comes before that of u; and had
1+ had x as one of its arguments.

LookUp(x) returns false. We must prove that there exists no call to IN-
SERTPAIR that committed earlier than uy, had a return value of success
and had x as one of its arguments.

Let us assume otherwise, i.e., that there was such a call p4 that set
A[i].content to x, had a return value of success, i.e., set A[i] .valid to
true, and released lock L[i] before the commit point of uy, i.e., before
starts execution. By the argument in the first case above, the fields of A[i]
have not been modified after they are set by py. Thus, when p; acquires
L[1i] in iteration i, LOOKUP(x) would find that all the necessary conditions
to return true are satisfied. This contradicts the fact that LOOKUP(x)
returned false. Therefore, it must be the case that no such p4 exists.

O

163

	Introduction
	Preliminaries
	State transition systems
	Refinement between state transition systems

	Example
	Runtime refinement checking
	Commit actions
	Off-line refinement checking using a log

	Improving I/O refinement
	Logging information to compute view

	Related work
	Comparison with atomicity and linearizability

	Discussion
	References

