
RV’04 Preliminary Version

Program Instrumentation and Run-Time
Analysis of Scoped Memory in Java

D. Garbervetsky 1 C. Nakhli 2 S. Yovine 3 H. Zorgati 4

Abstract

We present a method to analyze, monitor and control dynamic memory allocation
in Java. It first consists in performing pointer and escape analysis to detect mem-
ory scopes. This information is used to automatically instrument Java programs
in such a way memory is allocated and freed by a region-based memory manager.
Our source code instrumentation fully exploits the result of scope analysis by dy-
namically mapping allocation places to the region stack at runtime via a registering
mechanism. Moreover, it allows executing the same transformed program with dif-
ferent implementations of scoped-memory managers and perform different run-time
analysis without changing the transformed code. In particular, we consider a class
of managers that handle variable-size regions composed of fixed-size memory blocks
for which we provide analytical models for the intra- and inter-region fragmentation.
These models can be used to observe and control fragmentation at run-time with
negligible overhead. We describe a prototype tool that implements our approach.

Key words: Java, Memory management, Run-time analysis,
Real-time and embedded systems.

1 Introduction

Current trends in the embedded and real-time software industry are lead-
ing towards the use of object-oriented programming languages such as Java.
From the software engineering perspective, one of the most attractive issues
in object-oriented design is the encapsulation of abstractions into objects
that communicate through clearly defined interfaces. Because programmer-
controlled memory management inhibits modularity, object-oriented languages,

1 School of Computer Science, Universidad de Buenos Aires, Argentina. E-mail:
diegog@dc.uba.ar. Partially supported by projects ANCyT grant PICT 11738 and IBM
Eclipse Innovation Grants.
2 VERIMAG, France. E-mail: chaker.nakhli@imag.fr.
3 VERIMAG, France. E-mail: sergio.yovine@imag.fr. Partially supported by projects
DYNAMO (Min. Research, France) and MADEJA (Rhône-Alpes, France).
4 VERIMAG, France, and University of Tunis, Department of Computer Science, Tunisia.
E-mail: hichem.zorgati@imag.fr.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Garbervetsky, Nakhli, Yovine and Zorgati

like Java, provide built-in garbage collection [15] (GC), that is, the automatic
reclamation of heap-allocated storage after its last use by a program. However,
automatic memory management is not used in real-time embedded systems.
The main reason for this is that the temporal behavior of software with dy-
namic memory reclaiming is extremely difficult to predict.

Several GC algorithms have been proposed for real-time embedded applica-
tions. For instance, [12] proposes to use an incremental copying algorithm [6]
during the execution of low-priority tasks. To insure that high-priority tasks
will not run out of memory, enough storage space must be pre-allocated. Be-
sides, the sharing of garbage collection time among low-priority tasks is not
evident. [18] adapts the incremental mark-and-sweep algorithm for a JVM
that allocates objects as a collection of small memory blocks. The inconve-
nience of this algorithm is that the number of increments required per allo-
cated block depends on the size of the whole reachable memory. [16] adapt
the classical reference-counting algorithm [7]. Its response time depends on
the total number of reachable objects when it has to collect a non-referenced
cycle. [13] propose a picoJava-II hardware implementation of an adaptation
of the incremental treadmill algorithm [11]. This approach is not portable and
it does not ensure predictable execution times.

To overcome the drawbacks of current GC algorithms, the RTSJ [4] pro-
poses a memory management API based on the concept of “scoped memory”.
The idea is to allocate objects in regions [10,19] which are associated with the
lifetime of a computation unit (method or thread). Regions are freed when
the corresponding unit finishes its execution. However, determining objects’
scope is difficult. Therefore, programming using the RTSJ API is error-prone.

To avoid using the RTSJ API directly, [9] proposes to automatically instru-
ment a Java program and to replace (whenever possible) Java new statements
by calls to the RTSJ scoped-memory API. Doing so requires analyzing the
program to determine the lifetime of dynamically allocated objects. Their ap-
proach is based on a weighted graph of references, where nodes are allocation
points, arcs represent the points-to relation, and weights correspond to depths
in the call chain. Roughly speaking, weights are associated with scopes, and
dynamic programming is used to minimize weights, that is, to bind any al-
location point to the smallest depth of an allocation point of an object that
transitively points to some object created at the former.

To build the graph, [9] uses a profiler. Thus, there is no assurance that
the graph over-approximates the possible references to an object in all possi-
ble runs. In consequence, scoped-memory rules are not necessarily respected
which forces corresponding run-time checks to be performed by the API imple-
mentation, with the implied running time overhead. Besides, the instrumen-
tation is such that each creation site is statically assigned to a fixed region.
This technique may make objects live significantly longer than needed.

Here, we propose a method that attempts to tackle these two issues. The
first step is to apply pointer and escape analysis techniques [3,8,17] to the pro-

96



Garbervetsky, Nakhli, Yovine and Zorgati

gram to synthesize scopes. Using pointer and escape analysis it is possible to
conservatively determine if an object “escapes” or is “captured by” a method.
Intuitively, an object escapes a method when its lifetime is longer than the
method’s lifetime, so it can not be collected when the method finishes its ex-
ecution. An object is captured by the method when it can be safely collected
at the end of its execution.

Based on the information above we synthesize a memory organization that
associates a memory region with each method in such a way the restrictions
imposed by the scoped-memory management scheme are fulfilled by construc-
tion. Thus, run-time checks can be safely eliminated to enhance performance.
To instrument the program, we define an API that avoids the RTSJ over-
head of creating a runnable object each time a new memory scope is created.
Our instrumentation fully exploits the result of the scope analysis by dynam-
ically mapping creation sites to the region stack at runtime via a registering
mechanism. This allows to control at run-time where the object is actually
allocated according to given performance criteria (e.g., minimizing memory
fragmentation), without changing the source-level instrumentation.

We also address the issue of monitoring and evaluating run-time perfor-
mance of the scoped-memory manager. In this paper, we focus on region-based
memory managers that handle variable-size regions composed of fixed-size
memory blocks. For this class of managers, we provide an analytical model
of the intra- and inter-region fragmentation for several allocation algorithms
(e.g., first-fit and best-fit). These models can be used to observe and control
fragmentation at run-time with negligible overhead. Run-time analysis also
allows tuning the parameters to accommodate to the needs of the program.

We finally describe a prototype tool that implements our approach.

2 Preliminaries

Following [17], we define a program to be a set {m0, m1, . . .} of Methods. A
method m has a list Pm of parameters. Each statement is identified with a
Label =def Method× IN which uniquely characterizes its location.

A Call Graph of a method m is a directed graph CGm =< N, E > where
N = Methods represents the program methods and E = (Methods×Label×
Methods) represents the call relation. (c, l,m) ∈ E means that the method c,
at location l, calls method m. We assume that we can determine at compile
time, for each call, exactly which method will be invoked, not being able to
have more than one possible invocable method. Supporting inheritance and
late binding is outside the scope of this work.

Since currently we do not deal with recursive programs, a finite Call
Tree CTm =< N,E > can be obtained by unfolding the call graph. This
unfolding is done by cloning the nodes that have more than one parent.
N = MethodsCT = Label+ ×Method represents the path from the root node
and E = (MethodsCT × Label ×MethodsCT )

97



Garbervetsky, Nakhli, Yovine and Zorgati

Let α ∈ Label+. Let α = α′.i, i ∈ IN , we define trim(α) = α′. Let
l ∈ Label such that α = α1.l.α2, and l does not appear in αi, i = 1, 2. We
define pref(α, l) = α1.l, and suff(α, l) = l.α2. We define last(α.l) = l and
first(l.α) = l. The projection mth() of Label+ onto Method is recursively
defined as mth(m.i) = m and mth(α.m.i) = mth(α).m. These operations are
naturally extended to nodes of the call tree. We define paths(CTm) to be the
set of paths of CTm, and predm(ρ) to be the subtree of CTm composed of all
paths of the form ρ′.mth(first(ρ)) such that ρ′.ρ ∈ paths(CTm).

A control flow graph (CFG) is a directed graph G =< N, E, entry, exit >
where N is the set of nodes and E is the set of edges. entry and exit are
specials nodes indicating unique start and ending points. Given a method m,
Gm is the CFG of m which includes transitively the CFG of every method
that m calls. Each node n ∈ N corresponds to one statement and has a
label l ∈ Label+. Notice that, since a called method is macro-expanded in
the control flow graph each time it is invoked, labels are composed by the
corresponding path in CTm and its relative location.

By convention, m0 is the main method. Thus, Gm0 is the control flow
graph of the program, and CTm0 its call tree.

We call Creation Site every place (defined by its Label+) of the program
where an object is created (i.e. there is a new or a newA statement). For
simplicity we assume that new statements only create object instances. Con-
structors are assumed to be called separately. Calls to constructors are handled
as any other method call. CSm denotes the set of creation sites reachable from
the entry point of the method m control flow graph.

We call Call Site every place (defined by its Label+) of the program where
there is method call. Callsm denotes the set of method calls in Gm.

Example

In Figure 1 we present one motivating example. The Call Graph and Call
Tree for method m0 are depicted in Figure 2.

The creation sites for each method of our example are:

CSm0 = { m0.1, m0.2.m1.2, m0.2.m1.3, m0.2.m1.5.m2.3,
m0.2.m1.5.m2.6, m0.2.m1.5.m2.7, m0.2.m1.5.m2.8,
m0.2.m1.6, m0.3.m2.3, m0.3.m2.3, m0.3.m2.6, m0.3.m2.7,
m0.3.m2.8 }

CSm1 = { m1.3, m1.5.m2.3, m1.5.m2.6, m1.5.m2.7, m1.5.m2.8, m1.6 }

CSm2 = { m2.3, m2.6, m2.7, m2.8 }
The call sites for each method of our example are:

Callsm0 = { m0.2, m0.3 }

Callsm1 = { m1.5 }

Callsm2 = { } 2

98



Garbervetsky, Nakhli, Yovine and Zorgati

void m0(int mc) {
1: RefO h = new RefO();
2: Object[] a = m1(mc);
3: Object[] e = m2(2*mc,h);

}
Object[] m1(int k) {

1: int i;
2: RefO l = new RefO();
3: Object[] b = newA Object[k];
4: for(i=1;i<=k;i++) {
5: b[i-1] = m2(i,l);

}
6: Object[] c = newA Integer[9];
7: return b;

}

Object[] m2(int n, RefO s) {
1: int j;
2: Object c,d;

3: Object[] f = newA Object[n]

4: for(j=1;j<=n;j++) {
5: if(j % 3 == 0) {
6: c = newA Integer[j*2+1];

}
else {

7: c = new Integer;
}

8: d = new Integer[4];
9: s.ref = d;
10: f[j-1] = c;

}
11: return f;

}

class RefO {
public Object ref;

}

Fig. 1. Motivating example

Fig. 2. Call Graph and Call Tree for method m0 of the proposed example

3 Scoped memory management

In the Real-Time Specification for Java (RTSJ) [4] scoped-memory manage-
ment is based on the idea of allocating objects in regions which are associated
with the lifetime of a runnable object. This approach imposes restrictions on
the way objects can reference each other in order to avoid the occurrence of
dangling references. An object o1, belonging to a region r, can point to other
object o2 only if one of the following conditions holds: o2 belongs to r; o2
belongs to a region that is active when r is active; o2 is in the heap; o2 is
in the inmortal (or static) memory. An object o1 can not point to an object
o2 in region r if: o1 is in the heap; o1 is in inmortal memory; r is not active
sometime during o1’s lifetime.

At runtime, region activity is related to the execution of computational

99



Garbervetsky, Nakhli, Yovine and Zorgati

units (e.g., methods or threads). In an single-threaded program, where each
region is associated with one method, there is a region stack, where the number
and ordering of active regions corresponds exactly to the appearances of each
method in the call stack. In a multi-threaded program, where regions are
associated with threads and methods, there is a region tree which branches
are related to each execution thread. In this paper, we assume that threads
do not share regions, that is, threads only interact through the immortal
memory [4].

Programming with scoped-memory management is difficult and error-prone.
One solution is to statically check whether a program satisfies the restrictions
above. This approach is followed in [10], where a type system is proposed.
Here we propose to automatically infer scopes by static analysis and automat-
ically instrument the program with the appropriate region-based allocations
in such a way the restrictions imposed by the scoped-memory management
scheme are fulfilled by construction.

3.1 Inferring scopes

In order to infer scope information we use pointer and escape analysis [3,8,17].
This is a static analysis technique that discovers the relationship between
objects themselves and between objects and methods. It has been used in
several applications such as synchronization removal, elimination of runtime
checks, stack and scoped allocation, etc.

Here, we are interested in conservatively determining if an object “es-
capes” or is “captured by” a method. An object escapes a method when its
lifetime is longer than the lifetime of the method. Let escape : Method →
IP (CreationSite) be the function that returns the creation sites that escape
a method. An object is captured by the method when it can be safely
collected at the end of the method’s execution. Let capture : Method →
IP (CreationSite) be the function that returns the creation sites that are cap-
tured by a method.

For the sake of simplicity, we do not explain here how these two functions
are computed. The interested reader is referred to [3,8,17]. Instead, we use
our example to illustrate the technique.

Example

The creation sites that escape and are captured by are the following:

escape(m0) = { }

escape(m1) = { m1.3, m1.5.m2.3, m1.5.m2.6, m1.5.m2.7 }

escape(m2) = { m2.3, m2.6, m2.7, m2.8 }

100



Garbervetsky, Nakhli, Yovine and Zorgati

Fig. 3. Escape analysis for creation sites m0.1, m1.2, m1.3, m2.3, m2.6 and m2.8

capture(m0) = { m0.2.m1.3, m0.2.m1.5.m2.3, m0.2.m1.5.m2.6,
m0.2.m1.5.m2.7, m0.3.m2.3, m0.3.m2.6, m0.3.m2.7,
m0.3.m2.8 }

capture(m1) = { m1.5.m2.8, m1.6 }

capture(m2) = { }

Let us consider a few cases. For instance, m1.3 escapes from m1. This is
because m1.3 is the creation site of the object assigned to b (represented in
Fig. 3 as the bi-directional arc from node b to node m1.3), which is returned
by (and therefore escapes from) method m1 (depicted as the arc from b to
a labeled rv 5 ). Creation site m2.3 escapes from m2. This is because the
memory allocated in line 6 of m2 is first referenced by c and then by an entry
of f (line 11), which is returned by m2. Since the returned object is assigned
to an entry of b when m1 calls m2 in line 5, and b is returned by m1, we have
that m1.5.m2.6 escapes. Besides, m0.2.m1.5.m2.6 is captured by m0. Also,
m2.8 escapes from m2 because the memory allocated is referenced by s which
is passed to m2 as a parameter, but, in this case, the creation site is captured
by m1 and m0 depending on the corresponding call chain. 2

Let m be a method and l ∈ Callsm, we define:

register(l) = {last(cs) | cs ∈ capture(mth(l)) ∧ first(cs) = l}

5 rv stands for return value.

101



Garbervetsky, Nakhli, Yovine and Zorgati

Example

The creation sites registered to call sites in the example are the following:

register(m0.2) = { m1.3, m2.3, m2.6, m2.7 }

register(m0.3) = { m2.3, m2.6, m2.7, m2.8 }

register(m1.5) = { m2.8 } 2

3.2 Synthesizing memory regions

Based on the information above we can synthesize a memory organization
that associates a memory region rm with each method m in such a way the
restrictions imposed by the scoped-memory management scheme are fulfilled.

The properties of escape analysis ensure that the lifetime of objects allo-
cated by creation sites captured by a method m does not exceed the lifetime
of m itself. That is, no object captured by m can be pointed-to by an object
captured by a method (transitively) calling m. Thus, the memory referenced
by those objects can be safely reclaimed after m terminates.

Let cs be a creation site and m be a method such that cs ∈ capture(m),
that is, m = mth(first(cs)). We define reclaim(cs) to be the subtree of the
call tree of the program composed of those paths having cs as suffix, that is:

reclaim(cs) = predm0(trim(cs))

= {pref(ρ, m) | ρ ∈ paths(CTm0) ∧ trim(cs) = suff(ρ, m)}
In words, mth(ρ) is a call stack, and mth(pref(ρ, m)) is the portion of the

stack that contains all methods where it is safe to allocate the memory required
by cs. If an object o is allocated at line i of method n, where n.i = last(cs),
when the call stack is mth(ρ), then o can be safely allocated in any region rm′ ,
where m′ appears in the prefix of the call stack upto method m.

3.3 API and program transformation

In order to perform scoped-memory management at program level, we propose
an API which differs from the RTSJ one, described in [2,4], in two major
points. First, in our API memory scopes are not bound to runnable objects.
In this point, our API is closer to the RC library [10]. Second, our API
does not specify a unique region where an object is allocated, but rather a
set of regions corresponding to methods in a prefix of the call stack. The
actual region where the object will be allocated at runtime is left out to the
implementation. We will discuss this issue in the next section. The API is
shown in Table 1.

The program is transformed as follows. Let m be a method.

• The calls to enter(rm) and exit are inserted at the beginning and at the end
of the method.

• Let l = m.i ∈ Label be the label of a new C (resp. newA C[n]) statement

102



Garbervetsky, Nakhli, Yovine and Zorgati

enter(r) push r into the region stack

exit() collect the objects in top region

current() return the top region

determineAllocationSite(CS) register creation sites in CS

newInstance(l,c) create an object of class c

newAInstance(l,c,n) same but for arrays of dimension n

Table 1
Scoped-memory API.

in the body of m. The statement in line i is replaced by an invocation to
newInstance(l,c) (resp. newInstance(l,c,n)).

• Recall that creation sites are distinguished in the analysis by the paths in
the call tree. Since a newInstance at label l only carries l as a parameter,
and not the call chain, it is necessary to dynamically change the capture
information to be able to compute reclaim() at runtime. To do so, we
register the set of creation sites captured by a method at the corresponding
call site. Let l be such that m = mth(l). If register(l) 6= ∅, an invocation
to determineAllocationSite(register(l)) is inserted just before l.

Thus, at newInstance(l,c), where mth(l) = m, we have that pref(ρ, m) ∈
reclaim(cs) iff σ = mth(ρ) is the call stack, and last(cs) ∈ register(l). There-
fore, the object instance can be allocated in the region of any method in
pref(σ, m).

Example

Table 2 shows the instrumented code for the example. 2

3.4 Properties of the code instrumentation

In the instrumentation proposed in [9], which uses the RTSJ API [4], each
creation site is statically assigned to a fixed region by accessing directly outer-
scopes using the RTSJ method getOuterScope() at the allocation place. This
means that, when a creation site is captured by different methods (in different
call chains), the inferred scope is necessarily the one corresponding to the
capturing method which is closer to the root of the call tree. Therefore, this
approach tends to generate fewer regions with bigger sizes, specially near the
call tree root, thus maximizing objects’ lifetime.

On the contrary, our instrumentation fully exploits the result of the scope
analysis in terms of call chains, by dynamically mapping creation sites to a
prefix of the region stack at runtime via the registering mechanism. The actual
region where an object is allocated in is determined by the implementation.
One possible strategy consists in allways allocating objects in the region of the

103



Garbervetsky, Nakhli, Yovine and Zorgati

class RegisterExample

{

final static String[] m0_2= {"m1_3","m2_3","m2_6","m2_7"};

final static String[] m0_3= {"m2_3","m2_6","m2_7","m2_8"};

final static String[] m1_5= {"m2_8"};

}

void m0(int mc) {

ScopedMemory.enter(new Region("m0"));

RefO h =(RefO) ScopedMemory.newAInstance("m0_3", RefO.class,1);

Object[] a;

ScopedMemory.determineAllocationSite(RegisterExample.m0_2);

a = m1(mc);

Object[] e;

ScopedMemory.determineAllocationSite(RegisterExample.m0_3);

e = m2(2 * mc, h);

ScopedMemory.exit();

}

Object[] m1(int k) {

ScopedMemory.enter(new Region("m1"));

int i;

RefO l =(RefO) ScopedMemory.newAInstance("m1_2", RefO.class, 1);

Object b[] = (Object[]) ScopedMemory.newAInstance("m1_3", Object[].class, k);

for (i = 1; i <= k; i++) {

ScopedMemory.determineAllocationSite(RegisterExample.m1_5);

b[i - 1] = m2(i, l);

}

Object c[] = (Integer[]) ScopedMemory.newAInstance("m1_6", Integer[].class, 9);

ScopedMemory.exit();

return b;

}

Object[] m2(int n, RefO s) {

ScopedMemory.enter(new Region("m2"));

int j; Object c, d;

Object[] f = (Object[]) ScopedMemory.newAInstance("m2_3", Object[].class, n);

for (j = 1; j <= n; j++) {

if (j % 3 == 0) {

c = (Integer[]) ScopedMemory.newAInstance("m2_6", Integer[].class, j * 2 + 1);

} else {

c = (Integer[]) ScopedMemory.newAInstance("m2_7", Integer[].class, 1);

}

d = (Integer[]) ScopedMemory.newAInstance("m2_8", Integer[].class, 4);

s.ref = d;

f[j - 1] = c;

}

ScopedMemory.exit();

return f;

}

Table 2
Instrumented code for the example

method that captures them (that is, the last one in the prefix). This strategy
produces regions which sizes tend to be bigger for the leafs of the call tree,
that is for those methods with shorter lifetimes, rather than near the root. In
other words, it minimizes the lifetime of allocated memory.

Example

Consider, for instance, creation site m2.8 in our example (see Fig. 3). The
instrumentation of [9] will always allocate memory inside the region r0 associ-
ated with method m0, independently of the caller. Our instrumentation will

104



Garbervetsky, Nakhli, Yovine and Zorgati

dynamically choose to allocate memory inside regions r0 or r1, depending on
the caller m0 or m1, respectively. 2

Our approach allows executing the same transformed program with different
implementations of scoped-memory managers. In particular, our API can be
implemented directly on top of the ones proposed by the RTSJ and RC. All
these instantiations will be functionally equivalent. However, they may exhibit
different performances with respect to different quantitative parameters, such
as region size, allocation time and memory fragmentation. In the next section,
we discuss several possible implementations and focus our analysis on the
fragmentation problem.

4 Run-time analysis

In this section we describe a framework for analyzing the behavior at run-
time of different region-based memory-allocation algorithms that can be used
to implement the scoped-memory API. In particular, we consider allocation
algorithms that handle variable-size regions composed of fixed-size memory
blocks. These algorithms typically manage a linked list of blocks where ob-
jects are allocated according to a first-fit or best-fit strategy [20]. The former
allocates the object in the first block where there is enough place to. The
latter searches for the block with the smallest amount of free space. The in-
terest of these algorithms resides in the fact that allocation time is linear in
the number of blocks, while region deletion is linear in the number of allocated
objects (because of the calls to methods’ finalizers) 6 . However, they introduce
memory fragmentation, that is, holes of (temporarily) unusable free memory.
Predicting the number of blocks and objects in a region is difficult and out
of the scope of this paper. A static-analysis technique for over-approximating
such numbers is described in [5]. Here we concentrate on the problem of an-
alyzing the run-time behavior of the allocation algorithms regarding memory
fragmentation.

4.1 Intra-region fragmentation

The unused space of a region after a sequence of allocations is considered to
be an “intra-region fragmentation” if the next allocation is such that:

(1) no single empty fragment is bigger than the size of the object to be
allocated, and a new memory block needs to be added to the region, and

(2) the total amount of empty space is bigger than the size of the object.

Now, let ω = o1 · · · on be a sequence of objects to be allocated in region.
We denote by R the set of blocks of the region, and by Ri the set of blocks asso-
ciated to the region before allocating object oi. The sequence R1, · · · , Rn+1 is
computed as follows. Initially, R1 = {B1}. Now, suppose Ri be {B1, . . . , Bmi

}.
6 The cost could be made constant if calls to finalizers are eliminated via static analysis.

105



Garbervetsky, Nakhli, Yovine and Zorgati

Let freek
i be the empty space in block Bk and Ki be the set of indices of blocks

that have enough empty space to allocate object oi, that is,

Ki = {k ∈ [1, mi] | freek
i − size(oi) ≥ 0}.

Then,

Ri+1 =

 Ri ∪ {Bmi+1} if Ki = ∅,

Ri otherwise.

Let 4i be a total order over Ki that gives the ordering of blocks of Ri that have
enough space to allocate oi according to the search strategy. For instance, for
first-fit, 4i is such that a 4i b iff a ≤ b , for all a, b ∈ Ki, and for best-fit, 4i

is such that a 4i b iff freea
i ≤ freeb

i , for all a, b ∈ Ki.

The value freek
i is computed as follows. Initially, free1

1 = size(B1). For
i ≥ 1, if Ki 6= ∅,

freek
i+1 =

 freek
i − size(oi) if k = min4i

Ki,

freek
i otherwise,

and if Ki = ∅,

freek
i+1 =

 size(Bk)− size(oi) if k = mi + 1,

freek
i otherwise.

We define freei =
∑

k∈[1,mi]
freek

i .

Let f(R, ω) be the intra-region fragmentation of R produced by ω. It is
the sequence f1, · · · , fn such that:

fi =

 freei if Ki = ∅ ∧ freei − size(oi) ≥ 0

0 otherwise.

4.2 Inter-region fragmentation

The region where an object will be actually allocated is chosen by an inter-
region allocation strategy. Here we consider three possible ones: (1) always
allocate in the one of the capturing method (that is, the one corresponding
to the method that registers the creation site); (2) allocate in the first region
backwards in the prefix (of the call stack) where there is enough free space
for the object (inter-region first-fit); (3) allocate in the region (in the corre-
sponding prefix of the call stack) that leaves the smallest possible remanent
(inter-region best-fit).

Let Γ = Rmi1 . . . Rmip be the prefix of the region stack associated with a
creation site. The unused memory in Γ is considered to be an “inter-region

106



Garbervetsky, Nakhli, Yovine and Zorgati

fragmentation” when the allocation of a new object in Γ requires allocating
a new memory block to some region Rmij , 1 ≤ j ≤ p, while there is enough
contiguous free space in some other region Rmik , 1 ≤ j 6= k ≤ p, for the newly
created object.

The inter-region fragmentation of Γ produced by ω, denoted by F (Γ, ω),
can be defined similarly to f(R,ω).

5 Prototype tool

We have developed a software prototype that provides almost fully automatic
tool support for transforming Java programs into programs with controlled
memory management via our API, and for analyzing their run-time behavior
for different allocation algorithms. Figure 4 shows the structure of the tool.

Fig. 4. Tool suite

To generate the transformed program, we proceed as follows. We first use
the Flex Harpoon Compiler [1] to perform the escape analysis. The output of
Flex is used to compute the capture function. We have developed an Eclipse
plug-in that takes as input the original program and the capture function,
traverses the syntax tree of the program, and generates the transformed one.

The transformed code can be easily integrated into a test suite that pro-
vides a software platform (Java classes) with the appropriate wrappers for
executing the program. The test platform simulates the behavior of the dif-
ferent memory allocation algorithms by using the fragmentation models pre-
sented in the previous section. The classes have been developed in such a way
they can be parameterized in many ways, in particular, by different allocation
strategies, memory blocks’ sizes, and analysis functions.

The output of the analysis is given as charts implemented with the JChart
library. Figure 5 shows the intra-region fragmentation produced by a single
run of the transformed program for a given block size and intra-region allo-
cation strategy. The x-axis represents the sequence of memory accesses, that

107



Garbervetsky, Nakhli, Yovine and Zorgati

is, object allocations. The y-axis shows the intra-region fragmentation ratio,
that is, the percentage of total intra-region fragmentation (i.e., the sum for
all regions) for the total amount of allocated memory in all regions. It is
also possible to run the transformed code several times with different mem-
ory blocks’ sizes, but for the same sequence of allocations. In Figure 6, the
x-axis represents the block sizes, and the y-axis the minimum, maximum and
average intra-region fragmentation over all regions. The tool also provides
functionality to count and output the number of operations performed by the
algorithms.

Fig. 5. Intra-region fragmentation for a given block size

Fig. 6. Max/Min/Avg intra-region fragmentation for different block sizes

108



Garbervetsky, Nakhli, Yovine and Zorgati

6 Conclusions and Future Work

We presented a technique for program instrumentation at source code level
which transforms a Java program with heap-based allocation into one with
scoped-memory management. Our approach ensures scoping rules by con-
struction and decreases run-time overhead by eliminating run-time checks.

Our instrumentation offers a light-weight mechanism for gathering infor-
mation about and controlling memory allocation at run-time. In this paper,
we have focused on using it for analyzing memory fragmentation for different
allocation algorithms. Nevertheless, it can be used for other purposes such as
measuring the number of object intances, region sizes, allocation time, etc.

The results of the runtime analysis allows customizing the parameters of
the scoped-memory manager according to given performance criteria (e.g.,
minimize fragmentation ratio). It should be noted that this can be done
without touching the transformed program at all.

We are currently working on implementing our API on top of the RTSJ
and RC API, and integrating it into the TurboJ compiler [14]. Future work
includes extending our approach to deal with multi-threading and recursion,
and run-time validation of the static estimates given in [5].

References

[1] MIT. Program Analysis and Compilation Group. The Flex compiler
infraestructure. http://www.flex-compiler.csail.mit.edu/.

[2] W. Beebee and M. Rinard. An implementation of scoped memory for real-time
java. In EMSOFT 2001, volume LNCS 2211, October 2001.

[3] B. Blanchet. Escape analysis for object-oriented languages: application to Java.
ACM SIGPLAN Notices, 34(10):20–34, 1999.

[4] G. Bollella and J. Gosling. The Real-Time Specification for Java. Addison-
Wesley Longman Publishing Co., Inc., 2000.

[5] V. Braberman, D. Garbervetsky, and S. Yovine. On synthesizing parametric
specifications of dynamic memory utilization. Submitted for publicaction, 2004.

[6] R. A. Brooks. Trading data space for reduced time and code space in real-time
garbage collection on stock hardware. In Symposium on LISP and functional
programming, pages 256–262. ACM Press, 1984.

[7] D. R. Brownbridge. Cyclic reference counting for combinator machines. In
Conference on Functional programming languages and computer architecture,
LNCS 201, pages 273–288, 1985.

[8] J-D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S. P. Midkiff. Escape
analysis for Java. In OOPSLA, pages 1–19, 1999.

109



Garbervetsky, Nakhli, Yovine and Zorgati

[9] M. Deters and R. K. Cytron. Automated discovery of scoped memory regions
for real-time Java. In Proc. of the 3rd Int. symposium on Memory management,
pages 25–35. ACM Press, 2002.

[10] D. Gay and A. Aiken. Language support for regions. In SIGPLAN PLDI01,
pages 70–80, 2001.

[11] Jr. H. G. Baker. The treadmill: Real-time garbage collection without motion
sickness. ACM SIGPLAN Notices, 27(3):66–70, March 1992.

[12] R. Henriksson. Scheduling garbage collection in embedded systems. PhD.
Thesis, Lund Institute of Technology, July 1998.

[13] T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J-Ph. Lesot, and F. Parain.
Memory management for real-time Java: an efficient solution using hardware
support. Real-Time Systems Journal, 2002.

[14] Silicomp Research Institute. Turbo j. Java to native compiler.
http://www.ri.silicomp.fr/adv-dvt/java/turbo/index.htm.

[15] R. Jones and R. Lins. Garbage collection. Algorithms for automatic dynamic
memory management. John Wiley and Sons, 1996.

[16] T. Ritzau and P. Fritzon. Decreasing memory over-head in hard real-time
garbage collection. In EMSOFT’02, Grenoble, France. LNCS 2491, 2002.

[17] A. Salcianu and M. Rinard. Pointer and Escape Analysis for Multithreaded
Programs. ACM SIGPLAN Notices, 36(7):12–23, 2001.

[18] F. Siebert. Eliminating external fragmentation in a non-moving garbage
collector for Java. CASES’00, 2000.

[19] M. Tofte and J-P. Talpin. Region-based memory management. Information
and Computation, 1997.

[20] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage
allocation: A survey and critical review. International Workshop on Memory
Management, Kinross, Scotland, UK, September 1995.

110


	Introduction
	Preliminaries
	Scoped memory management
	Inferring scopes
	Synthesizing memory regions
	API and program transformation
	Properties of the code instrumentation

	Run-time analysis
	Intra-region fragmentation
	Inter-region fragmentation

	Prototype tool
	Conclusions and Future Work
	References

