
RV’04 Preliminary Version

Specifying and Testing Software Components
with Spec#

Wolfram Schulte

Microsoft Research, Redmond, Washington, USA
schulte@microsoft.com

Abstract

Spec# is a formal language for API contracts, based on AsmL (a wide spectrum
formal specification language), which extends C# with constructs for preconditions,
postconditions, object invariants, and model programs (behavioral contracts that
take the history of the entire run into account). Spec# is the input to a suite of
correctness tools. These tools include static and dynamic verification, a test case
generator and a model checker. Our goal is that Microsoft product teams will be
able to write Spec# contracts as simply or richly as they like and then drive all of
their checking tools from this common contract.

We discuss Spec# and its use for testing. Our SpecExplorer tool provides a rig-
orous, systematic way to generate behavioral test cases. With SpecExplorer testers
can search the space of all possible sequences of method invocations that 1) do not
violate the pre- and postconditions of the system’s contracts and 2) are relevant
to a user-specified set of test properties. The resulting traces are algorithmically
traversed to produce behavioral tests that cover all explored transitions. Spec#’s
Runtime Conformance Checker is used for test verification. It uses a specially in-
strumented build to dynamically enforce contractual constraints that cannot be
statically verified. More than just ”assertion checking” familiar to all programmers,
the conformance tool handles nondeterministic actions (such as user input and the
handling of events) and the mapping of abstract state given in an interface’s contract
with concrete state defined by the implementer.

Key words: Formal specification, test-case generation, runtime
monitoring, refinement.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs


