RV’02 Preliminary Version

Reducing the Overhead of Dynamic Analysis !

Suan Hsi Yong? and Susan Horwitz 3

Computer Sciences Department, University of Wisconsin-Madison
1210 West Dayton Street, Madison, WI 53706 USA

Abstract

Dynamic analysis (instrumenting programs with code to detect and prevent errors
during program execution) can be an effective approach to debugging, as well as
an effective means to prevent harm being caused by malicious code. One problem
with this approach is the runtime overhead introduced by the instrumentation. We
define several techniques that involve using the results of static analysis to identify
some cases where instrumentation can safely be removed. While we have designed
the techniques with a specific dynamic analysis in mind (that used by the Runtime
Type-Checking tool), the ideas may be of more general applicability.

1 Introduction

Languages like C and C++ that allow potentially unsafe operations such as
pointer arithmetic, casting, and explicit memory management open the door to
many difficult-to-detect errors as well as providing opportunities for malicious
code to be inserted into programs [20]. To address these problems, a number
of systems have been developed that involve dynamic analysis: instrumenting
a program so that errors like out-of-bounds array indexes and bad pointer
dereferences are detected when they occur during execution [2,7,14,13,9,10]. In
some cases, these kinds of dynamic checks are even mandated by the language
definition (e.g., Java guarantees that an exception will be thrown whenever
an index is out of bounds, or a bad cast is performed).

Naturally, the benefits of dynamic analysis have an associated cost: the in-
strumentation introduces a certain amount of runtime overhead. This paper
proposes several techniques for reducing the overhead by using static anal-
ysis to identify some cases in which instrumentation can safely be omitted.

L This work was supported in part by the National Science Foundation under grants CCR-
9970707 and CCR-9987435.
2 Email: suan@cs.wisc.edu
3 Email: horwitz@cs.wisc.edu
This is a preliminary version. The final version will be published in

FElectronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

YoONG AND HORWITZ

While the techniques were designed for one particular tool: the Runtime Type-
Checking (RTC) tool [10], the ideas may be of more general applicability.

The remainder of the paper is organized as follows. Section 2 provides
background on the RTC tool; Section 3 describes several static analyses that
can be used to identify unnecessary instrumentation: Section 3.2 describes an
approach to classify expressions into type-safety levels, so that instrumentation
for “type-safe” expressions can be eliminated, and Section 3.3 presents three
refinements to this analysis (one to account for uses of uninitialized data,
one to remove some checks for null-pointer dereferences, and one to identify
redundant instrumentation). Section 4 presents experimental results that help
gauge the potential benefit of these optimizations, Section 5 discusses related
work, and Section 6 concludes.

2 The RTC Tool

The RTC (Runtime Type-Checking) tool instruments C programs so that the
runtime type of every memory location is tracked during program execution,
and inconsistent type uses are reported as warnings and errors. Whenever
a value v is written into a location [, {’s runtime type is updated with v’s
runtime type. Also, this runtime type is compared with [’s declared type: if
they do not match, a warning message is issued (a warning message is an
indication that unusual behavior has been observed, and may be useful for
diagnosing the root cause of a later error). Whenever the value in a location
is used, its runtime type is checked, and if the type is inappropriate in the
context in which the value is being used, an error message is issued; to avoid
cascading error messages, the runtime type is set to the correct type after an
error message is generated.

2.1 Motwating Example

While a number of other tools have been proposed to detect out-of-bounds ar-
ray accesses and bad pointer dereferences, the type-checking approach of the
RTC tool can also detect more subtle errors involving type misuses. One such
class of errors has to do with a programming style in which C programmers
simulate classes and inheritance using structures [16]. For example, the fol-
lowing declarations might be used to simulate the declaration of a superclass
Base and a subclass Sub:

struct Base { int al; int *a2; };

struct Sub { int bl; int *b2; char b3; };

A function might be written to perform some operation on objects of the
superclass:

160

YoONG AND HORWITZ

void f (struct Base *b) {
b->al = ...
b->a2

3

and the function might be called with actual arguments either of type struct
Base * or struct Sub *:

struct Base base;
struct Sub sub;

f (&base) ;

f (&sub) ;

The ANSI C standard guarantees that the first field of every structure is
stored at offset 0, and that if two structures have a common initial sequence
— an initial sequence of one or more fields with compatible types — then
corresponding fields in that initial sequence are stored at the same offsets.
Thus, in this example, fields a1l and bl are both guaranteed to be at offset 0,
and fields a2 and b2 are both guaranteed to be at the same offset. Therefore,
while the second call, f (&sub), would cause a compile-time warning (which
could be averted with an appropriate type cast), it would cause neither a
compile-time error nor a runtime error, and the assignments in function f
would correctly set the values of sub.b1l and sub.b2.

However, the programmer might forget the convention that struct Sub is
supposed to be a subtype of struct Base, and while making changes to the
code might change the type of one of the common fields, add a new field to
struct Base without adding the same field to struct Sub, or add a new field
to struct Sub before field b2. For example, suppose a new int field, il is
added to struct Sub:

struct Sub { int bl; int il; int *b2; char b3; };

Now, when the second call to f is executed, the assignment b->a2 = ...
would write into the i1 field of sub rather than the b2 field. The fact that the
b2 field is not correctly set by the call to £, or that the i1 field is overwritten
with an unintended value, will probably either lead to a runtime error later in
the execution, or cause the program to produce incorrect output.

The tracking of runtime types performed by the RTC tool can help the pro-
grammer uncover the source of this logical error. The assignment b->a2 = ...
causes sub.il to be tagged with type pointer. A later use of sub.il in a con-
text that requires an int would result in an error message due to the mismatch
between the required type (int) and the current runtime type (pointer).

Note that in this example, a tool like Purify [7] would not report any errors,
because there are no bad pointer or array accesses: function f is not writing
outside the bounds of its structure parameter, it just happens to be the wrong
part of that structure from the programmer’s point of view.

161

YoONG AND HORWITZ

2.2 Tracking Types

The RTC tool associates with each memory location a runtime type repre-
sented as a tuple (o, size), where o is one of unallocated, uninitialized, zero,
integral, real, and pointer, and size is the size (in bytes) of the type. For ex-
ample, a char is represented by (integral, 1), and a float by (real,4) (on most
platforms). Pointers to different types are represented by the same runtime
type, (pointer,4) (on a platform where all pointers are 4 bytes in size), and
typedefs are not treated as separate types. For aggregate objects (structures
and arrays), the runtime type of each field/element is tracked separately. The
special zero type is used for memory locations that are assigned the literal
0; it is treated as being compatible with all C types. The runtime types are
stored in a “mirror” of the memory used by the program, with each byte of
memory mapped to a four-bit nibble in the mirror (thus incurring a 50% space
overhead).

The RTC tool has been implemented to handle all of ANSI C. It translates
a given set of preprocessed C source files into instrumented C files. These are
then compiled and linked with the RTC library, producing an executable that
performs runtime type checking and reports error and warning messages.

The instrumentation phase is a source-to-source translation of the C pro-
gram; it performs a syntax-directed transformation on the program’s abstract-
syntax tree to add calls to RTC library functions that track the runtime types.
The operations performed by these library functions can be grouped into the
following classifications:

declare - a variable declaration is instrumented to set the runtime type in
the variable’s mirror to uninitialized. (Initially, the mirror for all memory
is tagged unallocated.)

verify - a use of a memory location x in the context of a type 7 is instru-
mented to compare the runtime type in the mirror of z with 7. If the
types are not compatible, an error message is issued, and the runtime
type of x is corrected to 7 (to prevent cascading error messages).

verify-pointer - a pointer dereference is instrumented to check whether
the mirror of the pointer’s target is unallocated. If it is, an error message
is issued. This check detects dangling pointer dereferences, dereferences
of certain stray pointers (those that point between or beyond allocated
blocks), and also null-pointer dereferences (because the mirror of memory
location 0 is tagged unallocated).

copy - an assignment statement is instrumented to copy the runtime type
of the right-hand-side value into the mirror of the left-hand-side location;
additionally, if the runtime type of the assigned value does not match the
static type of the assignment, a warning message is issued.

The tool is designed so that instrumented modules can be linked with unin-
strumented ones. This flexibility is useful if, for example, a programmer only
wants to debug one small component of a large program: they can instrument

162

YoONG AND HORWITZ

only the files of interest, and link them with the remaining uninstrumented
object modules. A caveat when doing this, however, is that it may lead to
spurious warning and error messages because the uninstrumented parts of the
code do not maintain the necessary runtime type information for the memory
locations they use. For example, if a reference to a valid object in the unin-
strumented portion of the program is passed to an instrumented function, the
tool will consider that object unallocated, and may output a spurious error
message if that object is referenced.

This problem extends, in general, to library modules. For example, the
flow of values in a function like memcpy, the initialization of values from input
in a function like fgets, and the types of the data in a static buffer returned
by a function like ctime would not be captured. To handle these, we have
created a collection of instrumented versions of common library functions that
affect type flow. These are wrappers of the original functions, hand-written
to perform the necessary tag-update operations in the RT'C mirror to capture
their type behavior.

Included among these instrumented library functions are memory-
management functions. Each call to malloc (or one of its relatives) is replaced
with a call to a wrapper version which, upon successfully allocating a block
of memory, sets the mirror for that memory block to uninitialized. Similarly,
the wrapper version of the free function resets the mirror to unallocated. The
malloc wrapper also adds padding between allocated blocks to decrease the
likelihood of a stray pointer jumping from one block to another (this is the
approach used by Purify [7]).

The RTC tool was able to detect bugs in some SPEC benchmarks (go,
ijpeg), Solaris utilities (nroff, col, etc.), and Olden benchmarks (health,
voronoi) [10]. Most of the errors were out-of-bounds array or pointer accesses.
In the Solaris utilities, the out-of-bounds accesses resulted in program crashes;
in the SPEC cases, the errors had no apparent effect on the execution, which
made the errors difficult to detect without the use of a tool like the RT'C tool.
In every case, the RTC tool was able to detect the out-of-bounds memory
accesses because the type of the pointed-to memory was different from the
expected type.

Finally, the RTC tool lends itself naturally to interactive debugging. When
a warning or error message is issued, a signal (SIGUSR1) is sent, and can be
intercepted by an interactive debugger like GDB [17]. The user can then
examine memory locations, including the mirror, and make use of GDB’s
features to help track down the cause of an error.

3 Eliminating Unnecessary Checks

While the initial implementation of the RTC tool demonstrated its ability
to find errors in real programs as described above, a shortcoming of that
implementation was poor performance: in the worst case, an instrumented

163

YoONG AND HORWITZ

program ran 130 times slower than the non-instrumented version. This is
because the RTC tool instruments every expression in the program and tracks
the runtime type of every memory location used in the program.

Outlined below are some strategies for reducing the runtime overhead by
using the results of static analysis to identify and remove unnecessary instru-
mentation. First, we describe a flow-insensitive analysis that identifies “type-
safe” expressions that need no instrumentation. Next, we describe three flow-
sensitive refinements. These analyses have not yet been fully implemented; to
gauge the potential speedup that they will provide, we have implemented a
simpler analysis and tried it on a number of programs. The results of those
experiments are reported in Section 4.

3.1 Assumptions

The static analyses described below require the results of pointer analysis
to account for possible aliasing in the program. We assume that a (flow-
insensitive) points-to analysis (e.g., [1,21,18,5]) has been performed, so that
each pointer p in the program is associated with a points-to set, containing
variables to which p may point at some point in the program.

We also assume that the assignment statements in the input program have
been normalized to the forms defined by the following context-free grammar:

assign = lvalue = rvalue
| lalue = (T)prvalue
| lalue = (T)egrvalue
| lvalue = (T)cpyrvalue
lvalue = wvar| *xvar
rvalue = const | var | xvar | &var | var ® var

where const is a constant, var is a variable, and @ represents any C binary
operator. Type-casts are divided into three forms. The first form, (7)€, is
a type cast that involves a change in representation, and includes conversions
(e.g., between integers and floating-point values) and truncation of data (e.g.,
when type-casting a long int into a short int). The second form, (7)cge,
represents type-casts that extend data from a smaller type to a larger type
with no change in the data bits (e.g., from a short int into a long int).
The third form, (7)gye, represents type-casts where there is no change in the
form of the data, and includes casts between pointers and integers (of the same
size). The difference between these forms that concerns us is that, for (7)cye,
the RTC instrumentation checks that the runtime type of e is compatible with
its static type; if they are incompatible, an error message is issued, and the
runtime type of the expression is set to 7 to suppress further error messages.
For (7)egte and (7)qpye, no such check and correction is performed.

Most C assignment statements can be normalized as defined above. For
example, an assignment that involves an array index, such as z = a[i], can be
rewritten as tmp = a + 1; © = *tmp. Details of how to handle the remaining

164

YoONG AND HORWITZ

C constructs (e.g., structures, unions, and function calls) remain to be worked
out.

3.2 Type-Safety-Level Analysis

Our first static analysis is a flow-insensitive type-safety-level analysis that
partitions the expressions in a program into levels of “type safety”, so that
certain classes of runtime instrumentation (see Section 2.2) can be eliminated
for expressions at certain type-safety levels.

The proposed approach classifies expressions in the program into the fol-
lowing type-safety levels:

safe - An expression whose runtime type is guaranteed always to be com-
patible with its static type, and for which all instrumentation can be
eliminated.

unsafe - An expression whose runtime type may be incompatible with its
static type; this includes expressions of the form *p, when the pointer p
may be NULL, or may contain an invalid address. An unsafe expression
must be fully instrumented.

tracked - An l-value expression whose runtime type is always compatible
with its static type, but which may be pointed to by an unsafe pointer or
by a pointer whose points-to set includes a location with an incompati-
ble type. A tracked expression’s corresponding location needs to have its
runtime type initialized (to its static type) in the mirror, but instrumen-
tation for verifying and copying the runtime type for a tracked expression
can be eliminated.

Figure 1 presents an example code fragment to illustrate the intuition behind
the proposed approach. Since the approach is flow-insensitive, the order of the
statements is ignored in the analysis. The expressions p0, pl and p2 are safe
because they are only assigned pointer-typed values (recall that the RTC tool
does not differentiate between pointer types, so the fact that pl is assigned
both the address of an int variable and the address of a float variable is not
important; also recall that the literal 0 is treated as being compatible with all
types, including pointers).

The expressions f, *p0, *pl, and *p2 are all unsafe. Variable f is unsafe
because the assignment at line 13 could write an int value into f via *p1. The
expression *p0 is unsafe because p0 may be NULL (due to the assignment at
line 6); *p1 and *p2 are unsafe because while they each have a static type of
int *, *pl may refer to a float (because of the assignment at line 10), and
*p2 may refer to an invalid address (because of the pointer arithmetic at line
11).

Finally, the expression i is tracked. Although i will always contain an int
value, it may be pointed to by p1, which also includes f — a float variable —
in its points-to set. This means that every use of *p1 will be instrumented to
check its runtime type, and so every location in p1’s points-to set — including

165

YoONG AND HORWITZ

Code Expression Type-safety level
1. int i; PO, p1, p2 safe
2. int *p0,*pl,*p2; f, *p0, *pl, *p2 | unsafe
3. float f; i tracked
4. i=1;
9. f =2.3;
6. p0 =0;
7. if(xp0 == 0)
8. pl = &i;
9. else
10. pl = (int *) &f;
11. p2 = pl + i;
12. if(xp2 != 0)
13. *xpl = 4;

Fig. 1. Type-safety example.

i — must have its runtime type recorded in the mirror.
Within this framework, we can devise schemes of varying precision to de-
termine the type-safety level of each expression. Using the following ordering,

unsafe < tracked < safe

any scheme that classifies each expression at a level less than or equal to its
true level is a safe approximation. For example, the unoptimized RTC tool
corresponds to one extreme, where all expressions are considered unsafe. The
next three sections describe an efficient flow-insensitive analysis to classify the
type-safety of expressions. The analysis works as follows:

Step 1: Build an assignment graph in which the nodes represent the expres-
sions in the program, and the edges represent the flow of runtime types due
to assignments.

Step 2: Compute a runtime-type attribute for each node in the graph.

Step 3: Compute the type-safety level for each node in the graph (and thus
for each expression in the program).

3.2.1 Step 1: Building the assignment graph

The first step of the analysis involves building an assignment graph that
records the flow of runtime types among the expressions in the program. Each
node in the assignment graph corresponds to an expression, and represents an
“abstract object” of one of four forms: v, *v, &,v, and VALUE,. The v
node represents a variable v, xv represents a dereference, @,v represents an
arithmetic operation on v (resulting in a value of static type 7), and VALUE,
represents a value of type 7, e.g., from a constant expression. For both &, v,
and VALUE,, 7 will be either a scalar C type: char, int, float, etc, or one of

166

YoONG AND HORWITZ

| ezpr | AbsObj(expr) |

0 {VALUE, 10} | Assignment | Edge(s) in Graph |
C; : {VALUET} €1 = €9 ny <— ng, ni € AbSObj(&l),
&y {VALUE,atidg—ptr } ny € AbsObj(es)
Y {y} €1 = (T)cpyeQ ni <— ng, N € AbSObj(el)a
*Y {*y} ng € AbsObj(es)
y®dz 2| {®,y, &2} e1 = (T)ewio | N1 <= ny, ny € AbsObj(ey),
1 C. is a non-zero constant ny € AbsObj(es)
Of type T e = (T)exteg nq (ﬂ N9, 1N € AbsObj(el),
2 The expression y @ z has ny € AbsObj(es)
static type T (b)

(a)

Fig. 2. Rules for initializing the assignment graph.

the following special types:

valid-ptr: A pointer expression that is guaranteed to evaluate to a valid
address (the address of an allocated memory location) has type valid-ptr.
For example, the expression &x has type valid-ptr.

pointer: A pointer expression that may evaluate to an invalid address (in-
cluding NULL) has type pointer. For example, the expression &x + k has
type pointer.

zero: An expression that is guaranteed to evaluate to 0 has type zero. For
example, the literal 0 has type zero.

Nodes are connected by three kinds of (directed) assignment edges: con-
version edges (-=2%), extension edges (=), and copy edges (—). Conversion
edges represent assignments with a right-hand side of the form (7)€, exten-
sion edges represent assignments with a right-hand side of the form (7)cge,
and copy edges represent assignments that do not involve a type-cast, or that
involve a type-cast of the form (7)pye.

Figure 2(a) shows the mapping AbsObj from program expressions to ab-
stract objects, while Figure 2(b) gives the rules for adding edges to the graph.
For example, the assignment z = y @& z adds to the graph two copy edges,
T +— @,y and z <— @D, z, where 7 is the static type of the expression y & z.

Figure 3 shows the assignment graph that would be built for the example
code given earlier in Figure 1.

3.2.2 Step 2: Computing runtime types

After building the assignment graph, the analysis computes a runtime-type
attribute for each node in the graph. The values of runtime-type form the
lattice shown in Figure 4. Intuitively, the runtime-type for node n summarizes
the set of types that the expression corresponding to n might have at runtime.
A runtime-type of L means that an expression could have more than one

167

YoONG AND HORWITZ

VALUE float ;f

e I
* pl /
VALUE valid—ptrik o L EBpl

VALUE zerg = po

Fig. 3. The assignment graph for the example in Figure 1.

T =‘uninitialized’

/ Zero
valid—ptr/// \\\\
pointer char short int long float double

T2\ T

1 ='multiply-typed’

Fig. 4. The lattice for runtime-type.

incompatible runtime type.

Figure 5 gives the constraints for computing the runtime-type of each node
in the assignment graph. In the figure, pt-set(p) is the points-to set of p, while
static-type(n) is the static type of the expression represented by n.

Rules T1 and T2 set the runtime-type of each VALUE, node and each &,z
node to be its static type (7). Rule T3 constrains the runtime-type of a *p node
to be no higher in the lattice than the type of each variable in p’s points-to set.
Rule T4 constrains the runtime-type of the left-hand side of a conversion to be
no higher than its static type; this is safe because the RTC instrumentation
will check the type of the right-hand side, and correct the runtime tag if there
is an error. Rule T5 deals with extension edges: if the right-hand side of an
extension assignment is well-typed, then the runtime-type of the left-hand side
is constrained to be no higher than its static type; otherwise, the runtime-type
of the left-hand side is set to L (because such an assignment may potentially
copy complicated RTC tags into the mirror of the left-hand side). Rules T6a
and T6b handle assignment edges: if the left-hand side is a dereference of
a pointer p (rule T6a), then the runtime-type of each node in the points-to

168

YoONG AND HORWITZ

‘ Condition

Inferred Constraint

T1. runtime-type(VALUE,) = T
T2. runtime-type(®,x) =T
T3. | x € pt-set(p) runtime-type(xp) C runtime-type(z)
T4. | ny < ny runtime-type(n,) C static-type(n,)
if runtime-type(ns) = static-type(ns)
T5. | ny < ny then runtime-type(ny) C static-type(n,)
else runtime-type(n,) = L
*D — No, . .
) - C B,
T6a T € pl-set(p) runtime-type(x) T runtime-type(ns)
1 — o, . .
. : C ;
T6b 1y not of the form #p runtime-type(n,) C runtime-type(ns)

Fig. 5. Rules for computing runtime-type.

Assignments ‘ Assignment Edges ‘ Inferred Constraints
i=1; i <— VALUE;p; runtime-type(i) C int
f = 2.3; J <— VALUEfoqt runtime-type(f) C float
p0 = 0; p0 <— VALUE ¢ runtime-type(p0) C zero
pl = &i; pl <— VALUEyqiig_ptr | runtime-type(pl) T wvalid-ptr
pl = (int *) &f; pl <— VALUEyqiig_ptr | runtime-type(pl) T wvalid-ptr
p2 = pl + i; P2 <— Bpointer P1 runtime-type(p2) C pointer
P2 <— Bpointer | runtime-type(p2) C pointer
*pl = 4; *pl <— VALUE;,; runtime-type(xpl) C
(pt-set(pl) = {i, f}) runtime-type(i)
runtime-type(xpl) C
runtime-type(f)
runtime-type(i) C int
runtime-type(f) C int

Final runtime-types:

runtime-type(p0) = zero
runtime-type(pl) = valid-ptr runtime-type(f) =
runtime-type(p2) = pointer

runtime-type(i) =

runtime-type(xpl)

int
1
=1

Fig. 6. Computing runtime-types for the example in Figure 1.

set of p can be no higher than the runtime-type of the right-hand side; if the
left-hand side is a variable v, then its runtime-type can be no higher than the
runtime-type of the right-hand side.

Figure 6 illustrates the computation of runtime-types for the example of

Figure 1.

169

YoONG AND HORWITZ

‘ ‘ Condition ‘ Attribute ‘
L1. | runtime-type(n) 2 static-type(n) | n unsafe
L2. | static-type(p) = pointer,
runtime-type(p) # valid-ptr *p unsafe
L3. | xp unsafe,

x € pt-set(p),
x # unsafe x tracked

Fig. 7. Rules for determining type-safety attributes.

3.2.3 Step 3: Computing type-safety levels

Once the runtime-types are computed, each node of the graph is annotated
with an attribute signifying its type-safety level — either unsafe or tracked —
based on the rules given in Figure 7; after applying the rules, any node not
marked either unsafe or tracked is considered safe.

Rule L1 marks unsafe any node whose runtime-type is not compatible with
its static-type. For Rule L2, a pointer p whose runtime-type is not valid-ptr
may contain an invalid address; therefore xp must be instrumented to check its
runtime type, and is thus marked unsafe. Rule 1.3 marks tracked any variable
in the points-to set of a pointer p whose dereference node (xp) is unsafe.

Looking back at the example in Figure 6, Rule L1 makes f and xpl unsafe,
L2 makes *xp0 and *p2 unsafe, and L3 makes i tracked. This leaves p0, pl1 and
p2 as safe.

It is expected that a significant proportion of the expressions in a program
will be safe, and that the elision of type-checking instrumentation for those
expressions will result in a significant performance improvement in the RTC
tool.

Note that it is possible for the contents of a safe variable v to be accessed
indirectly by an errant pointer p. However, in such a case, *p will have been
marked unsafe, and thus will be instrumented with a verify-pointer operation.
Since safe variables are not instrumented, v’s mirror will be tagged unallocated,
so the check of xp will trigger an “accessing unallocated memory” error. Since
more memory will be tagged as unallocated “red zones” than before, this could
potentially catch more errors than the unoptimized RTC tool.

3.3 Flow-Sensitive Refinements

This section describes three flow-sensitive dataflow analyses that complement
the flow-insensitive type-safety-level analysis defined above. In the first case,
may-be-uninitialized analysis is needed to ensure the soundness of the in-
strumentation elimination proposed above. In the second case, never-null-
dereference analysis allows the above analysis to classify more expressions of
the form *p as safe, thus allowing more instrumentation to be eliminated.
In the third case, redundant-checks analysis discovers opportunities for fur-
ther elimination of runtime checks, in a direction orthogonal to the above ap-

170

YoONG AND HORWITZ

proaches. All three analyses can be described in terms of a standard dataflow
analysis; they are independent, and could be performed in parallel.

3.8.1 May-be-uninitialized analysis
The type-safety-level analysis described in Section 3.2 does not account for
uses of uninitialized data, which is an error currently detected by the RTC
tool. That is, by eliminating all instrumentation for safe and tracked loca-
tions, and by initializing tracked locations to their static types rather than to
uninitialized, the RTC tool will no longer detect uses of uninitialized data in
these locations. To address this problem, an additional flow-sensitive analysis
is needed to find program points where instrumentation cannot be elided.

For a location z that is safe or tracked, the analysis finds instances of
x where z may be uninitialized. This analysis uses dataflow facts of the
form wninit(x), which means z may be uninitialized. The fact uninit(z) is
generated for a local variable x at the program point where z is declared. An
assignment x = y that is reached by an uninit(y) fact generates an uninit(x)
fact; otherwise, an assignment into z kills uninit(x). For an assignment via
a pointer, we use the points-to sets already computed, and err on the side of
safety: if the assignment xp = y is reached by uninit(y), we generate uninit(v)
for each v in p’s points-to set; if not, we do not kill any uninit(v) facts. The
meet operator is set union.

A tracked or safe location z for which some use of z is reached by an
uninit(z) fact needs to be treated specially:

e The declaration of z is instrumented with a declare operation that sets its
type in the mirror to uninitialized.

» Every use of z that is reached by an uninit(x) fact is instrumented with a
verify operation.

» Every definition of z that might change z’s status (from uninitialized to
initialized, or vice versa) is instrumented with a copy operation (this ensures
that x’s tag is set correctly for subsequent uses of x). The only definitions
that are guaranteed not to change z’s status are those for which uninit(x)
holds neither before nor after the definition, thus, all other definitions of x
are instrumented.

3.3.2 Never-null-dereference analysis

Another shortcoming of the approach of Section 3.2 is that if a pointer p is
ever assigned a NULL value, then xp is marked unsafe (and must thus be fully
instrumented). This is because the NULL constant maps to the VALUE,e,
object, whose runtime-type is zero. The assignment to p causes p’s runtime-
type to be constrained to be no higher in the lattice than zero. This prevents
p’s runtime-type from being valid-ptr; thus, by Rule L2 in Figure 7, *p is
marked unsafe. This does not cause the RTC tool to miss any errors or to
report any spurious errors, but it adds to the runtime overhead by including

171

YoONG AND HORWITZ

some unnecessary instrumentation.

With another flow-sensitive refinement, we can find some instances of *p
where p is guaranteed not to contain a NULL value, and eliminate instrumen-
tation for checking those instances of *p.

First, the runtime-type lattice (in Figure 4) is modified so that the valid-ptr
type is below the zero type, as follows:

T =‘uninitialized’

zZero

char short int long float double

pointer\\\ / ///

1 ='multiply-typed’

valid—ptr

Second, Rule L2 in Figure 7 is changed to:
‘ ‘ Condition ‘ Attribute ‘

L2. | static-type(p) = pointer,
runtime-type(p) 2 valid-ptr | *p unsafe

With these modifications, for any pointer p that is only assigned valid
pointer values or a NULL value, *p will be safe. (Note that if a pointer may
be assigned the result of pointer arithmetic or other invalid pointer values,
then *p will still be considered unsafe.)

Next, we perform another dataflow analysis to account for possible null-
pointer dereferences of these pointers. The dataflow fact null(p) is generated
for each assignment of a NULL value into a pointer p. An assignment of
the form p = &z kills null(p). For an assignment ¢ = p that is reached
by null(p), null(q) is generated. For assignments via pointers, we make safe
approximations as in the may-be-uninitialized analysis. The transfer function
for a predicate with a null-comparison condition (e.g., p == 0) propagates a
null(p) fact along one branch, and kills it on the other, as appropriate. Again,
the meet operator is set union.

Upon completion of the analysis, a safe dereference xp that is reached by
a null(p) must be instrumented to perform a null-pointer check.

3.3.83 Redundant-checks analysis

One further flow-sensitive refinement is to eliminate redundant checks. When
a variable v is read many times with no intervening writes, a runtime check
is only necessary for the first read of v. Such situations can be detected
with the following dataflow analysis: a CFG node n that is instrumented to

172

YoONG AND HORWITZ

check variable v for type 7 generates a dataflow fact check(v,), while a node
containing an unsafe assignment into v (where the right-hand-side is unsafe)
kills all check(v,7) facts. The analysis must again be safe for assignments
via pointers: for an assignment into xp, if v is in p’s points-to set, then any
check(v, T) fact is killed. After the analysis, if the dataflow fact check(v,7)
reaches another node n; that is to be instrumented to check v for type 7, the
check at n; may be eliminated. This is only safe if a reaching fact check(v, 7)
means that the node is always reachable by another check of v for type 7.
Therefore, the meet operator needs to be set intersection.

4 Evaluating Potential for Optimizations

To estimate the potential speedup that could be gained from the type-safety-
level analysis, we implemented a simplified version that classifies type-safety
levels as follows: first, every variable whose address is taken and every pointer
dereference is marked unsafe; then the unsafe annotations are propagated
along assignment edges (that is, if the edge n; <— no is in the assign-
ment graph, and ny has been marked unsafe, then n; is also marked unsafe).
Upon completion of the analysis, expressions that map to abstract objects not
marked unsafe are considered safe, and are not instrumented with RTC checks.
This optimization gives a lower bound on the amount of instrumentation that
could be eliminated by the full type-safety-level analysis.

Figure 8 presents execution times for several benchmarks used in [9], and
several SPEC benchmarks, averaged over three runs on different test inputs.
Running times are given for the uninstrumented executables (column (a)),
for the unoptimized RTC-instrumented executables (column (b)), and for the
RTC-instrumented executables optimized using the results of the simple anal-
ysis (column (c)). Columns (d) and (e) give the slowdown factors for the RTC-
instrumented executables relative to the uninstrumented executable (e.g., for
aes, the unoptimized RTC-instrumented version runs 21.63 times slower than
the uninstrumented executable, while the optimized RTC-instrumented ver-
sion runs 11.46 times slower). Column (f) gives the percentage speedup of the
optimized RTC executable over the unoptimized one.

On average, the unoptimized RTC executables ran with a slowdown factor
of 37.4 times the execution time of the uninstrumented executables. The opti-
mized RTC executables ran with a slowdown of only 25.1 times, corresponding
to an average speedup of 39.9% over the unoptimized RTC executables. This
result shows that even with a simple conservative analysis we can achieve
significant speedup.

Figure 9 presents some details about the results of the simplified analysis.
Column (a) gives the number of abstract objects in each benchmark, and
column (b) gives the number of those objects marked unsafe by the analysis.
Overall, 41.0% of the abstract objects are marked unsafe. On the one hand,
this number indicates that even the simplified analysis was able to classify

173

YoONG AND HORWITZ

Running Times (ms) Slowdown Factor (f)

(a) (b) (c) (d) (e) Opt %
Benchmark No Unopt Opt Unopt Opt Speed-up

RTC RTC RTC RTC RTC

aes 5,195 | 112,378 | 59,545 | 21.63 11.46 47.01
cacm 8,319 | 194,069 | 68,093 | 23.33 8.18 64.91
cfrac 8,138 | 438,254 | 301,391 | 53.85 37.03 31.23
matxmult 4.610 | 32,375 | 17,159 7.02 3.72 47.00
ppm 5,895 | 210,689 | 184,582 | 35.74 31.31 12.39
compress | 31,467 | 976,861 | 344,684 | 31.04 10.95 64.72
go 14,805 | 793,880 | 587,306 | 53.62 39.67 26.02
ijpeg 2,102 | 76,761 | 32,620 | 36.52 15.52 57.50
1i 4,599 | 339,382 | 312,817 | 73.79 68.01 7.83

Fig. 8. Comparison of running times for the uninstrumented executable, the unop-
timized RTC-instrumented executable, and the optimized RTC-instrumented exe-
cutable. The slowdown factor is in comparison to the uninstrumented executable.

(a) (b) () (d)
Benchmark | # abs | # unsafe | # deref | % singl
objs objs objs pt-sets
aes 705 214 142 73.65
cacm (decode) 120 30 18 50.00
cfrac 1781 657 209 52.56
matxmult 122 29 24 25.93
ppn (encode) 881 374 65 86.53
compress 557 152 59 62.12
go 15096 5783 2939 | 22.61*
ijpeg 14130 5564 | 2217 || 15.11%
li 5406 3087 383 3.44%*
*numbers from [5].

Fig. 9. Results of the simplified analysis.

the majority of the abstract objects as safe. On the other hand, there are
still many objects marked unsafe that might potentially be marked safe by
the full type-safety-level analysis. To estimate this potential, we considered
how using a points-to analysis such as the one defined by Andersen [1] might
improve our results.

Note that our simplified analysis very closely approximates the results
of performing the full type-safety-level analysis using a degenerate points-to
analysis, in which every object whose address is taken is in the points-to set
of every object that is ever dereferenced.? Column (c) of Figure 9 gives the

4 The two analyses differ only if all address-taken variables are of the same type, in which
case the full analysis with the degenerate points-to set would classify those variables as safe,

174

YoONG AND HORWITZ

number of dereference objects in each benchmark (abstract objects of the form
e, all of which are marked unsafe by the simplified analysis). On average,
those objects accounted for 15.6% of all abstract objects. We conjectured that
a non-trivial points-to analysis would give well-typed points-to sets for a large
proportion of those dereference objects, hence causing them to be marked safe,
and transitively resulting in a greater number of other abstract objects being
marked safe.

To evaluate this conjecture, we performed Andersen’s points-to analysis,
as implemented in [21], on the benchmarks, and measured the percentage of
dereference objects whose points-to sets contain exactly one element. This is
given in column (d) of Figure 9 (the numbers for the last three benchmarks
were obtained from [5]; due to limitations in our implementation we were
unable to analyze those programs). On average, 43.6% of the dereference
objects have singleton points-to sets. When a pointer’s points-to set contains
a single element, both the pointer and the pointer target are most likely well-
typed, and the two will therefore likely be safe locations. Therefore, this
column suggests the minimum percentage of potential reduction in the number
of dereference objects marked unsafe when we replace our simplified analysis
with the full type-safety-level analysis. For example, for aes, 73.65% of the
dereference objects had singleton points-to sets; therefore, we would expect at
least 73.65% of the 142 dereference objects in the program (all marked unsafe
by the simplified analysis) to be marked safe by the full type-safety-level
analysis, thus decreasing the total number of unsafe objects from 214 to 109.
Note that this estimate is overly conservative: even if a pointer’s points-to set
contains more than one object, if all of the objects are well-typed, then they
will all be safe, and even more of the objects marked unsafe by the simplified
analysis will be marked safe by the full type-safety-level analysis.

5 Related Work

Many runtime approaches have been proposed and developed that instrument
a program to track auxiliary information during program execution.

Purify [7] and Insure++ [14] are two commercial products that have proven
to be successful in detecting many classes of memory errors at runtime. Those
tools can cause a runtime slowdown of 20 times or more; it is possible that
using techniques similar to those presented here could decrease that slowdown.

Austin et al. [2] describe the Safe C' system which tracks information about
each pointer’s referent, and uses this information to detect spatial (e.g., array
out-of-bounds) and temporal (e.g., stale pointer dereference) access errors.
Patil et al. [15] propose a novel way to make this check more efficient by
performing the tracking and checking of the auxiliary information in a shadow
process on a separate processor.

while the simplified analysis would not.

175

YoONG AND HORWITZ

Cyclone [9] and CCured [13] are two systems based on the C language that
attempt to inject some level of safety while maintaining the low-level control of
the language. The Cyclone language includes the definition of different kinds
of pointers with different safety restrictions; “unsafe” pointer dereferences are
instrumented with runtime checks (using “fat pointers” in a manner similar to
Safe-C). To port an existing C program into Cyclone, the programmer must
manually convert C pointers into the appropriate kind of Cyclone pointer to
achieve optimal performance; an analysis to automatically classify pointers
into the appropriate safety level, similar to the type-safety-level analysis pro-
posed in this paper, would make it easier to port existing C code, and thus
encourage greater use of this new language.

CCured also includes runtime checks for bad pointer dereferences.
CClured’s checks are more limited than RTC checks: specifically, CCured fo-
cuses only on pointers, and does not differentiate non-pointer types. Further-
more, C'Cured can be too strict (i.e., certain valid program behavior, such as
storing the address of a stack variable in a global variable, or storing a pointer
value in an integer, casting it back, and dereferencing it, will cause a runtime
check to fail).

To reduce the overhead of runtime checks, C'Cured uses a type-inference
scheme to identify as many safe and sequence pointers as possible, thus min-
imizing the amount of instrumented operations. The goal of their type infer-
ence is thus similar to that of our type-safety-level analysis. However, their
type-inference scheme is less precise than our proposed analysis: they effec-
tively group points-to sets into equivalence classes (in the spirit of Steens-
gaard’s points-to analysis [18]), while our analysis accounts for the direction-
ality of assignments. Despite this, they were able to significantly improve
the performance of instrumented CCured programs, from the unoptimized
slowdown of 6-20 times, to between 1 and 2 times slowdown using the type-
inference optimization. This suggests the potential of our analysis achieving
comparable or better performance improvements.

The use of runtime checks to enforce safety properties, and techniques
for eliminating unnecessary checks to improve performance, have been used
in other programming languages and environments. Implementations of
dynamically-typed languages like LISP and Scheme need to maintain run-
time information to perform runtime type-checking as part of the language’s
semantics. To improve the performance of such a system, Henglein [8] pro-
poses an efficient approach based on type inference. The Java language needs
to perform potentially expensive runtime checks, such as array-bounds checks,
to enforce safety properties guaranteed by the language. The elimination of
redundant and unnecessary array-bounds checks in Java and other safe lan-
guages has been studied extensively [19,12,6,3,4,11].

176

YoONG AND HORWITZ

6 Conclusions

We have presented some techniques for reducing the runtime overhead of the
instrumentation added to C programs by the Runtime Type-Checking tool.
In Section 3.2, we defined a flow-insensitive type-safety-level analysis, which
marks each expression in the program safe, unsafe, or tracked. The results of
that analysis, used in conjunction with the results of the may-be-uninitialized
analysis defined in Section 3.3.1, can be used to remove most of the instru-
mentation for safe and tracked expressions.

Two further flow-sensitive analyses were presented in Sections 3.3.2
and 3.3.3 to eliminate more instrumentation. The first, never-null-dereference
analysis, eliminates checks for pointers that can be statically determined never
to be null. The second identifies redundant checks that can be eliminated as
well.

To gauge the potential benefits to be gained by these optimizations, we im-
plemented a simplified version of the type-safety-level analysis, and presented
experimental results that suggest there is much potential for improving the
performance of the RTC tool. It is possible that similar ideas can be adapted
for other tools that involve detecting errors via runtime instrumentation.

References

[1] L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU
report 94/19).

[2] T. Austin, S. Breach, and G. Sohi. Efficient detection of all pointer and
array access errors. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’9}), SIGPLAN Notices 29(6), pages 290—
201, Orlando, FL, June 1994.

[3] R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating array bounds checks
on demand. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’00), SIGPLAN Notices 35(5), pages 321-333,
Vancouver, BC, June 2000.

[4] Wei-Ngan Chin, Siau-Cheng Khoo, and Dana N. Xu. Deriving pre-conditions
for array bound check elimination. In Proceedings of the Second Symposium on
Programs as Data Objects, PADO 2001, pages 2-24, Aarhus, Denmark, May
2001.

[5] Manuvir Das. Unification-based pointer analysis with directional assignments.
In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’00), SIGPLAN Notices 35(5), pages 35-46, Vancouver,
BC, June 2000.

177

YoONG AND HORWITZ

[6] Rajiv Gupta. Optimizing array bound checks using flow analysis. ACM Letters
on Programming Languages and Systems, 2(1-4):135-150, March-December
1993.

[7] R. Hasting and B. Joyce. Purify: Fast detection of memory leaks and access
errors. In Proceedings of the Winter Useniz Conference, 1992.

[8] Fritz Henglein. Global tagging optimization by type inference. In LISP and
Functional Programming, pages 205-215, 1992.

[9] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and
Yanling Wang. Cyclone: A safe dialect of C. In USENIX Annual Technical
Conference, Monterey, CA, June 2002.

[10] A. Loginov, S. Yong, S. Horwitz, and T. Reps. Debugging via run-time type
checking. In Fundamental Approaches to Software Engineering (FASE), volume
2029 of Lec. Notes in Comp. Sci., pages 217-232. Springer, April 2001.

[11] Mikel Lujan, John R. Gurd, T. L. Freeman, and Jose Miguel. Elimination of java
array bounds checks in the presence of indirection. Technical Report CSPP-13,
Department of Computer Science, University of Manchester, February 2002.

[12] Victoria Markstein, John Cocke, and Peter Markstein. Optimization of
range checking. In ACM SIGPLAN Symposium on Compiler Construction,
SIGPLAN Notices 17(6), pages 114-119, Boston, MA, June 1982.

[13] George Necula, Scott McPeak, and Westley Weimer. CCured: Type-safe
retrofitting of legacy code. In ACM Symposium on Principles of Programming
Languages, Portland, OR, January 2002.

[14] Parasoft. Insure++: An automatic runtime error detection tool, 2001.
http://www.parasoft.com/ insure/papers/tech.htm.

[15] H. Patil and C. Fischer. Low-cost, concurrent checking of pointer and array
accesses in C programs. Software—Practice and Ezperience, 27(27):87-110, 1997.

[16] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and T. Reps. Coping with
type casts in C. In Proc. of ESEC/FSE ’99: Seventh European Softw. Eng.
Conf. and Seventh ACM SIGSOFT Symp. on the Found. of Softw. Eng., pages
180-198, September 1999.

[17] R. Stallman and R. Pesch. Using GDB: A Guide to the GNU Source-Level
Debugger. July 1991.

[18] Bjarne Steensgaard. Points-to analysis in almost linear time. In ACM
Symposium on Principles of Programming Languages, pages 32—41, 1996.

[19] Norihisa Suzuki and Kiyoshi Ishihata. Implementation of an array bound
checker. In ACM Symposium on Principles of Programming Languages, pages
132-143, Los Angeles, CA, January 1977.

178

YoONG AND HORWITZ

[20] D. Wagner, J.S. Foster, E.A. Brewer, and A. Aiken. A first step towards
automated detection of buffer overrun vulnerabilities. In Symposium on

Network and Distributed Systems Security (NDSS ’00), pages 3-17, San Diego,
CA, February 2000.

[21] S. Yong, S. Horwitz, and T. Reps. Pointer analysis for programs with structures
and casting. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’90), SIGPLAN Notices 25(6), pages 91-103,
Atlanta, GA, May 1999.

179

