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Abstract

The difficulty of finding errors caused by unexpected interleavings of threads in con-
current programs is well known. Model checkers can pinpoint such errors and verify
correctness but are not easily scalable to large programs. The approach discussed
here is more scalable but less systematic. We transform a given Java program by
inserting calls to a scheduling function at selected points. The scheduling function
either does nothing or causes a context switch. The simplest scheduling function
makes the choice blindly using a pseudo-random number generator; more sophis-
ticated scheduling functions use heuristics to weight the choices. We try to insert
as few calls as possible while still ensuring that for each reachable deadlock and
assertion violation, there is a sequence of choices by the scheduling function that
leads to it; thus, there is a non-zero probability of finding it by testing the trans-
formed program, regardless of the scheduling policies of the underlying Java Virtual
Machine.

1 Introduction

The difficulty of finding errors caused by unexpected interleavings of threads
in concurrent programs is well known. This has prompted the development of
powerful tools to help find such errors. Motivated by the increasing popularity
of concurrent programming in Java, we focus here on tools that can be applied
to programs written in Java, although similar tools exist for other languages.

The Java Language Specification [15] provides essentially no guarantees
about the thread scheduler. Therefore, for a concurrent Java program to be
robust in the face of varying load conditions (which can perturb the schedul-
ing) and portable across all operating systems and Java run-time environ-
ments (which may have different thread scheduling policies), it must work
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correctly despite arbitrary interleavings of the instructions executed by differ-
ent threads.

Model checkers are powerful tools that can help pinpoint errors in concur-
rent programs and, if the program’s state space is not too large, can verify
correctness. Model checkers aim to control all non-determinism (including
non-determinism in scheduling) and exhaustively explore the system’s pos-
sible behaviors. Existing model checkers for Java include the original Java
PathFinder [16], the second generation of Java PathFinder [3], which builds
in part on ideas from Spin [18], and JavaChecker [24], which builds in part
on ideas from VeriSoft [12]. The systematic and exhaustive nature of model
checkers is attractive, but it limits their scalability.

This paper describes work-in-progress that explores a technique that is
more scalable but less systematic. The approach is to insert calls to a schedul-
ing function at selected points in the program under test. The scheduling func-
tion either does nothing or causes a context switch. The simplest scheduling
function makes the choice blindly using a pseudo-random number generator.
The pseudo-random number generator is seeded at the beginning of the exe-
cution. Normally, the seed is based on the current time and is logged. More
sophisticated scheduling functions combine randomness with heuristics that
weight the choices. The heuristics may consider the current state alone or the
history as well. History is stored information about the current execution and
possibly previous executions. The scheduling function may cause a context
switch by invoking Thread.yield or Thread.sleep.

The transformed program is executed repeatedly to test it. If an error is
found with a particular seed, the program is re-executed with the same seed to
help reproduce the error. With this simple approach, reproducibility is likely
but not guaranteed. Guaranteed reproducibility requires a capture-and-replay
mechanism, such as [5].

We implemented this approach in a tool called rstest (random scheduling
test). To help demonstrate its scalability, we are applying it to ArgoUML [1],
an open-source UML-based graphical software design environment. ArgoUML
consists of 4 MB of class files plus 7 MB of libraries (not including the standard
Java run-time library). Within a fairly short time, we found what is apparently
a concurrency-related error. The experiment is described in Section 7.4. More
work is needed to evaluate the effectiveness of this approach at finding errors
in such large systems. We also applied it to some smaller systems with known
errors, which were easily revealed by rstest.

ConTest and ConTest-lite [9,8] are very similar to rstest. We designed
and implemented rstest in about a man-month before learning of their work.
ConTest was developed by a team at the IBM Haifa Research Laboratory
during the past 2 to 3 years. Naturally, ConTest is a much more mature and
comprehensive system. For example, ConTest contains a capture-and-replay
mechanism and a deadlock detection component, and it uses a novel coverage
metric in the scheduling function. These useful features are currently not
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implemented in rstest but could be added.

A distinguishing feature of our design is the method for selecting the pro-
gram points at which calls to the scheduling function are inserted. Compared
to ConTest, it inserts fewer calls to the scheduling function, without reducing
the probability of finding a wide range of errors, and without compromising
probabilistic completeness. The probabilistic completeness property is: for
each reachable deadlock and assertion violation, there is a sequence of choices
by the scheduling function that leads to it. Thus, there is a non-zero probabil-
ity of finding it by testing the transformed program, even if the probability of
finding it by testing the original program in the same run-time environment is
zero, due to the particular thread scheduler in that run-time environment. We
assume only that the thread scheduler is fair. Reducing the number of calls
to the scheduling function has two benefits. First, it reduces the slowdown
caused by calls to the scheduling function. Second, it reduces the average
number of context switches in counterexamples (i.e., executions in which er-
rors occur) produced by the tool. This makes the counterexamples easier to
understand.

Another feature of our design is the use of a loop in the scheduling function,
rather than a conditional, so that a single call can produce multiple context
switches.? Without the loop, if yield is used to cause context switches, then
the technique lacks probabilistic completeness. If sleep is used to cause con-
text switches, a similar issue arises and can be resolved by using a loop or
randomizing the duration of the sleep.

Many model checkers, including Spin [18] and Java PathFinder [3], have
a random testing mode that is similar in functionality to rstest, but the dif-
ferences in implementation strategy have significant practical consequences:
applying Spin or Java PathFinder to an application the size of ArgoUML
would require significant manual effort to develop a manageable abstraction
of the system, while rstest can be applied easily.

VeriSoft [12] and JavaChecker [24] are model checkers that perform sys-
tematic state-less search [12]. They are similar in implementation strategy to
rstest: all three tools insert calls to a scheduler into a given program. VeriSoft
has successfully been applied to industrial-size systems (e.g., [13]). VeriSoft
is designed to control non-determinism in multi-process systems. Typically,
identifying inter-process communication statements is straightforward, and in-
serting calls to the scheduler at all of them is reasonable. rstest is targeted at
(uni-process) multi-threaded programs. Identifying shared storage locations is
non-trivial, and inserting calls to the scheduler at every access to every shared
location would typically introduce significantly higher overhead than inserting
those calls only at the places identified by our approach. JavaChecker is also
targeted at multi-threaded systems, but it is more complicated and incurs

2 Last-minute note: ConTest also does this (Shmuel Ur, private communication), although
this is not mentioned in [9,8].
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higher overhead than rstest, because it completely controls the scheduling in
order to perform systematic search.

Future work abounds. The most significant tasks are to finish implement-
ing the design described in Section 3, incorporate heuristics into the scheduling
function, and perform more experiments to evaluate the effectiveness of the
approach. In practice, heuristics [9,7,14] are crucial for effectively finding er-
rors in large systems. Although our current implementation does not use any
heuristics, our approach to reducing the number of calls to the scheduling
function is compatible with the use of heuristics.

The rest of the paper is organized as follows. Section 2 provides background
on synchronization in Java bytecode. Section 3 describes how to select the
program points at which calls to the scheduling function are inserted. Sec-
tion 4 discusses the scheduling function. Section 5 states the probabilistic
completeness property. Section 6 describes the status of the implementation.
Section 7 describes some preliminary experimental results.

2 Overview of Synchronization in Java Bytecode

The primitive synchronization operations in Java bytecode are based on the
classic operations on monitors [20]. In effect, each object in Java implicitly
contains a unique lock and a unique condition variable. The locks are recursive,
i.e., a thread can re-acquire a lock that it holds, and a lock is free iff each
acquire of it has been matched by a release.

monitorenter and monitorexit are instructions that acquire and release,
respectively, the lock associated with a specified object.

An invocation of a method declared as synchronized implicitly acquires
the lock associated with the target object (i.e., the this argument). Exiting
from such an invocation implicitly releases the lock.

Thread.holdsLock (o) is a static native method that returns true iff the
current thread holds o’s lock. This is a new feature in JDK 1.4.

wait, notify, and notifyAll are final native methods of Object. They
are inherited by all objects. They throw IllegalMonitorStateException if
invoked by a thread that does not own the target object’s lock; otherwise, they
behave as follows. o.wait() adds the calling thread ¢ to o’s wait set (i.e., the
set of threads waiting on o), releases o’s lock, and suspends ¢. When another
thread notifies ¢, ¢ contends to re-acquire o’s lock. When ¢ acquires the lock,
the invocation of o.wait() returns. o.notify() non-deterministically selects
a thread t in o’s wait set, removes ¢ from the set, and notifies t; if o’s wait
set is empty, o.notify() has no effect. o.notifyA11() removes all threads
from o’s wait set and notifies each of them. A thread ¢ waiting on an object
can also be awoken by an invocation of ¢.interrupt (), where interrupt is
a method of java.lang.Thread.

There are bounded-time variants of wait that time-out if the waiting
thread is not notified within a specified time interval.
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3 Where to Call the Scheduling Function

ConTest inserts calls to the scheduling function at all concurrent events, which
are, by definition, the events whose order determines the result of the program.
Specifically, all synchronization operations (described in Section 2), all object
access instructions, and all getstatic and putstatic instructions (which
read and write static fields of classes) are treated as concurrent events. The
object access instructions are getfield and putfield (which read and write
instance fields of objects) and the array access instructions (Java bytecode has
several instructions for accessing elements of arrays; different instructions are
used for different types of elements). Furthermore, ConTest “executes sleep()s
before and after concurrent events” [8, section 5.1].

Static analysis can be used in straightforward ways to reduce the number
of inserted calls to the scheduling function. For example, we use an escape
analysis and do not insert calls to the scheduling function at accesses to ob-
jects that (according to the analysis) have not yet escaped from the thread
that created them. This does not reduce the probability of detecting asser-
tion violations and deadlocks. We designed and implemented a simple escape
analysis for this purpose; more sophisticated escape analyses, such as [4,25],
could be used instead.

The rest of this section describes a more powerful approach to reducing
the number of inserted calls to the scheduling function. Storage locations
are classified as unshared, protected, or unprotected (defined below). This
provides a basis for classifying operations as visible or invisible. The visible
operations (except class initialization) are a subset of ConTest’s concurrent
events. Calls to the scheduling function are inserted immediately before visible
operations. This suffices for probabilistic completeness, discussed in Section
5. Fewer calls to the scheduling function are inserted, because the calls are:
(1) not inserted before monitorexit, returns from synchronized methods, or
notifyAll, (2) inserted before only some occurrences of the other instructions
that ConTest treats as concurrent events, and (3) not inserted after any of the
instructions that ConTest treats as concurrent events.

This approach is only partially implemented. Our current implementation
is described in Section 6.

Classification of Storage Locations.

A storage location is unshared if it is accessed by at most one thread. In
Java, all variables (locals and parameters) are unshared. Heap locations (i.e.,
instance fields of objects) and static locations (i.e., static fields of classes) may
be shared or unshared.

An (heap or static) location z is protected (by a lock) if either (1) every
access to x after initialization is a read, or (2) there exists a lock £ such that,
for every access to x after initialization, £ is held by the accessing thread when
the access occurs. The definition of “initialization” is based on the principle
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that initialization of a location z must end before concurrent access to = by
multiple threads is possible. Specifically, we define initialization as follows.
Initialization of a heap location x ends when a reference to x escapes from the
thread that allocated z. Initialization of a static location z in class C (i.e., =
is a static field of C') ends when the class initializer for C' terminates. Recall
that the JVM automatically provides synchronization for class initialization
to ensure that other threads cannot access x until the class initializer for C
terminates [15, Section 2.17].

This definition of “protected” is based closely on the Eraser locking dis-
cipline [21], except that we use a different definition of initialization, because
Eraser’s definition would not ensure probabilistic completeness.

The unprotected category is intended for storage locations that are shared
and not protected. However, any location can safely be classified as unpro-
tected, i.e., the probabilistic completeness results in Section 5 still hold. As
will become evident, to minimize the number of calls to the scheduling func-
tion, locations should be classified as unshared or protected whenever possible.

Java’s primitive synchronization operations are treated specially in the
following classification of operations, so the above classification of storage
locations is not applied to storage locations accessed by those operations (e.g.,
the location that indicates which thread holds an object’s lock).

Classification of Operations.

An operation is wisible if it (1) accesses an unprotected location, or (2) is a
potentially blocking synchronization operation or a call to Thread. interrupt,
or (3) is non-deterministic.

Operations that possibly access unprotected locations are object access
instructions, getstatic, and putstatic.

The potentially blocking synchronization operations are monitorenter, in-
vocations of synchronized methods, two operations in wait (the initial block-
ing operation, and the operation that re-acquires the lock after the thread
has been notified), and operations that may implicitly cause a class to be
initialized (specifically, in states in which class C' is not fully initialized, all
operations that access class C are visible, namely, accesses to static fields of C,
invocations of static methods of C, creation of instances of ', and invocations
of some methods in java.lang.Class and java.lang.reflect).

Informally, class initialization is visible because it involves acquiring a lock,
namely, the lock associated with the class. That lock protects a shared storage
location containing the initialization status of the class (e.g., “initialization in
progress by thread ¢” or “fully initialized”).

The only operation that we regard as non-deterministic is notify.

It might seem surprising that notifyAll is invisible and Thread. interrupt
is visible, since both operations are deterministic and have similar effects on
a waiting thread. The root of the difference is that o.notifyAll is effective
only if the calling thread holds o’s lock, while Thread.interrupt has no such
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constraint.

Thread.holdsLock, the new synchronization primitive in JDK 1.4, is in-
visible. Intuitively, this is because execution of other threads cannot affect its
return value.

3.1 The Transformation

The transformation is parameterized by a classification of objects into the
three above categories. Objects are classified by their type. Specifically, the
transformation is parameterized by a list of unshared classes (i.e., all instances
of these classes are classified as unshared) and a list of protected classes (i.e.,
all instances of these classes are classified as protected). Other classes are
treated as unprotected by default. Section 3.2 describes how these lists are
obtained.

Based on this classification of objects, a call to the scheduling function is
inserted before each visible operation. For most bytecode instructions, it is
easy to determine statically whether the instruction performs a visible opera-
tion. However, due to dynamic method dispatch, it is impossible (in general)
to determine statically whether an invocation instruction invokes a synchro-
nized or unsynchronized method.? This is not a big problem, because inserting
a call to the scheduling function before an invisible operation is harmless, ex-
cept for the overhead. So, a call to the scheduling function is inserted before
each “invokevirtual C.m” instruction such that C.m or any method that
overrides it is synchronized, where m denotes the name of a method and its
type signature. Similarly, a call to the scheduling function is inserted before
each “invokeinterface I.m” instruction such that some class C' implements
I and has a synchronized method C.m.

3.2 Obtaining the Classification of Objects

The classification of objects can be obtained through static analysis, run-time
monitoring, or a combination of the two.

Static Analysis.

Escape analysis can be used to conservatively determine which objects are
unshared. Type systems for race-free programs [10,2] are designed to show
that locks specified in type annotations protect certain objects. The soundness
theorem for the type system states, roughly, that in a well-typed program, all
objects are unshared or protected. It is not difficult to generalize this result
to state that, if parts of the program are well-typed, then (all instances of)
certain classes are unshared or protected.

3 This difficulty could be avoided by inserting a call to the scheduling function at the
beginning of each synchronized method, rather than at call sites. But then the call to the
scheduling function occurs after, not before, the visible operation. This does not satisfy the
hypotheses of the probabilistic completeness result in Section 5.
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In general, the user supplies type annotations, which are automatically
checked. By a combination of well chosen defaults and trial-and-error type
inference [11], even with few or no manually supplied type annotations, most
of a program will typically pass the type checker, allowing many of the classes
that are unshared or protected to be classified as such.

Run-Time Monitoring.

Run-time monitoring can also be used to obtain, by iterative refinement, a
probabilistically correct classification. (Correctness is discussed in Section
5.) The initial classification may be arbitrary; a simple choice is to initially
classify all classes as unshared. The program is transformed to check for vi-
olations of the classification, as described below, in addition to the insertion
of calls to the scheduling function. If a violation of the classification occurs
in any execution, the classification is automatically modified to eliminate it.
A violation involving an unshared class C' causes C' to be re-classified as pro-
tected. A violation involving a protected class C' causes C' to be re-classified
as unprotected. Then the program is re-transformed, and testing resumes.

To check for violations of the classification of class C' as unshared, each
object access instruction that accesses an object o of class C' is instrumented
with a call to a static method checkUnshared (o), which maintains a hash
map firstAccessed that maps each object reference o to the first thread
that accessed 0. An entry that maps o to Thread.currentThread() is cre-
ated in A when o is first accessed. Subsequent accesses to o check whether
Thread.currentThread() equals firstAccessed.get(0); if not, a violation
is reported. firstAccessed should be a weak hash map (see java.util.-
WeakHashMap); this means that an entry for o in the hash map does not prevent
o from being garbage collected. It should also be an identity hash map (see
java.util.IdentityHashMap in JDK 1.4); this means that during look-ups,
equality tests are done with ==, not equals. Relying on equals would be
inappropriate and dangerous, because application programmers can override
it with arbitrary code.

To check for violations of the classification of a class as protected, the
lockset algorithm [21] may be used. It was designed to detect data races.
It maintains, for each object o, the set of locks that have been held at all
accesses to o so far during execution, excluding accesses during initialization.
To accommodate our definition of initialization, escape analysis is used to
determine when a reference to a newly created object can escape from the
creating thread, and code is inserted at appropriate points to change the state
maintained by the lockset algorithm for the object from initialization to post-
initialization. Note that the lockset algorithm is run only for instances of
classes that are classified as protected.
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Combining Static Analysis and Run-Time Monitoring.

Type systems for race-free programs are attractive, because they incur no
run-time overhead in the transformed program. However, the type systems
are incomplete (i.e., programs may contain protected classes that cannot be
verified as such by the type checker), especially in the absence of manually
supplied type annotations. This suggests the following hybrid approach. Use
a type system (or other static analysis) to identify some classes that are def-
initely unshared or definitely protected; run-time monitoring is unnecessary
for these classes. Use iterative refinement based on run-time monitoring to
obtain a probabilistically correct classification for the remaining classes.

3.8 Discussion

Use of static analysis to reduce the number of inserted calls to the scheduling
function appears to have no disadvantages. For run-time monitoring, it is
unclear whether the benefits outweigh the overhead. The answer is more
likely to be positive for monitoring whether a class is unshared, because it has
significantly less overhead than the lockset algorithm. Running the lockset
algorithm for the sole purpose of reducing the number of inserted calls to the
scheduling function is unlikely to be worthwhile, but the lockset algorithm is
often run for other reasons, in which case we may exploit it for this purpose,
too. For example, ConTest includes a race detection component [8, Section 3]
and tries to force operations involved in races to execute in a different order
in subsequent executions.

4 Design of the Scheduling Function

The semantics of Java does not constrain which thread runs next after a
context switch. Therefore, probabilistic completeness of the approach requires
that a call to the scheduling function has a non-zero probability of transferring
control to each runnable thread. Depending on the JVM used during testing,
a single call to yield might not achieve this.

For example, consider a program with three threads. Let al, bl, a2, and
a3 denote accesses to a shared storage location. Let schedla, sched2, etc.,
denote calls to the scheduling function (the suffixes “1a”, etc., are not part of
the actual call; they are included only to provide a distinct name for each call
site, for use in the figure below). The main thread, t1, starts the other two
threads. Their actions are:
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t2.start
schedla
rdy=[t2]
al sched2
t3.start rdy=[t1]
sched1b
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Fig. 1. Possible schedules of the sample program, under the stated assumptions
about the JVM’s scheduler. Values of the ready list are shown at selected points.

thread tl thread t2  thread t3
t2.start sched2 sched3
schedla a2 a3

al

t3.start

sched1b

bl

Suppose each invocation of the scheduling function randomly performs zero
or one calls to yield. Suppose the scheduler of underlying JVM is round-robin;
thus, it maintains a list of threads that are ready to run (the “ready list”),
and when the current thread blocks or uses up its current quantum of CPU
time, the scheduler puts the current thread at the tail of the list and runs
the thread at the head of the list. Suppose further that the scheduler puts
newly started threads at the head of the ready list, and that its scheduling
quantum is sufficiently large that it does not cause context switches during
execution of this short program. Figure 1 shows all of the possible schedules
for this program under these assumptions. There is a schedule that is possible
according to the semantics of the language but cannot occur under these
assumptions, namely, the schedule in which accesses to the shared location
occur in the order al, a2, a3, bl.

If yield is used to cause context switches, an easy way to avoid this problem
is to use a scheduling function in which the call to yield is inside a loop, e.g.,

static java.util.Random prng = ...;
static float contextSwitchProb = ...;

public static void schedFn() {
while (prng.nextFloat() < contextSwitchProb) Thread.yield();
}
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where prng is a pseudo-random number generator, and contextSwitchProb
is a parameter that determines the probability of performing a context switch.
It is easy to see that, after adding these loops, each runnable thread has a
non-zero probability* of being the next one to exit from the loop, assuming
the thread scheduler is fair. Continuing the above example, after al and a2
execute, t1 might execute the loop in the scheduling function a second time,
thereby performing an additional context switch that allows a3 to occur before
bl.

If sleep is used to cause context switches, a similar issue arises and can be
resolved by using a loop or randomizing the duration of the sleep.

5 Probabilistic Completeness

The following results are corollaries of the reduction theorems in [24].

Suppose the classification of objects is correct (e.g., it is ensured by static
analysis). Consider a program transformed as described in Section 3.1. For
each reachable deadlock and assertion violation, there is a sequence of choices
by the scheduling function that leads to it. This implies that there is a non-
zero probability of finding it by testing the transformed program,

Suppose correctness of the classification of objects is not ensured by static
analysis. Consider a program transformed as described in Section 3.1 to con-
tain calls to the scheduling function and to monitor for violations of the classi-
fication. Probabilistic completeness holds for finding mis-classifications as well
as deadlocks and assertion violations. Specifically, if there is a reachable state
in which the classification has been violated, then there is a sequence of choices
by the scheduling function that leads to a state in which the classification has
been violated. When a mis-classification is found, it should be corrected, be-
cause there may be other mis-classifications that will not be discovered until
that is done and the program is re-transformed.

These results rely only on context switches caused by the scheduling func-
tion. The thread scheduler of the underlying run-time system may cause
additional context switches at any time. We assume only that the thread
scheduler is fair.

These results do not apply to programs that (before transformation) use
real-time primitives, such as Thread.sleep, bounded-time versions of Thread. -
wait, and System.currentTimeMillis. In practice, there is no obstacle to
applying the tool to such programs. This is likely to be useful if the overhead
of the instrumentation does not perturb the timing too much. Our design re-
duces the number of calls to the scheduling function and hence the overhead,
making the approach more useful for such systems.

4 With this simple change to the scheduling function, these probabilities are not equal.
This can be remedied, at the cost of some complication.
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6 Implementation

rstest is implemented as bytecode transformations using the Byte Code Engi-
neering Library [6]. In retrospect, the Soot compiler infrastructure [22] would
probably have been a better choice. Soot’s intermediate representation is eas-
ier to analyze and manipulate than bytecode. For example, with BCEL, it is
a hassle to insert calls to a scheduling or monitoring function that takes the
object being accessed as an argument, because a reference to that object is not
necessarily on top of the operand stack immediately before the access (e.g.,
for an invocation of a synchronized method, the object whose lock is being
acquired is on the operand stack below the other arguments to the method).
With Soot, adding such invocations should be easy.

In the current implementation, every object must be treated as unshared
or unprotected. Our tool inserts calls to the scheduling function at visible
operations (except at operations that may cause class initialization; this re-
mains to be implemented) and monitors for violations of the classification of
objects as unshared. Based on a simple escape analysis, it usually avoids in-
serting calls to the scheduling function at accesses to the this argument in
constructors.

Support for treating objects as protected is future work. We plan to
integrate a type system for race-free programs [2] and perhaps the lockset
algorithm (the easiest way would be to adapt the implementation in Java
PathExplorer [17]).

7 Experimental Results

For each application, we started with every class treated as unshared. If rstest
found a violation of this, the offending class was re-classified as unprotected.
Only application classes were transformed, not classes in the Java run-time li-
brary. Unless otherwise noted, the scheduling function contains a loop like the
one shown in Section 4, except with sleep instead of yield, with a sleep time
of 1 millisecond and a context switch probability of 1/8. Most of the experi-
ments, including all those with reported running times, were performed with
Sun JDK 1.3 on a Sun Ultral0 with 440MHz UltraSPARC CPU; a few were
performed with Sun JDK 1.3 on Windows XP. Reported running times are
user+system time, unless otherwise noted. Counts of “lines of code” exclude
blank lines and comments.

7.1 Clean

The Clean example is based on code in NASA’s Remote Agent and involves
two threads that use bounded counters, synchronized methods, wait, and
notifyAll. The code is 57 lines and is roughly the same as in [3, Figure
1]. The threads run in infinite loops, repeatedly interacting, but a context
switch at an inopportune time leads to deadlock. Without rstest, no deadlock
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occurred in 10 minutes of execution. With rstest, the deadlock occurred after
0.5 seconds (this is the average for 10 runs).

7.2 Fund Managers

The fund mangers example is from [19]. It involves multiple “fund manager”
threads that repeatedly transfer money between accounts. These transfers
should not change the total amount of money. However, if a context switch
occurs at an inopportune moment during a transfer, money can disappear or
be created. The code is 123 lines. We made two small changes to the code: we
reduced the number of fund managers from 150 to 2, because it is desirable
to test and debug with a small configuration before doing stress tests, and
we removed the call to Thread.setPriority, which was originally included
only as an artificial device to make the error more likely to manifest itself.
Each execution of the program performs a few thousand transfers. Without
rstest, the bug never manifested itself in 10 executions. With rstest, the bug
manifested itself many times in each execution.

7.8 Xtango Animation Library

The Xtango animation library [23] provides methods for drawing geometric ob-
jects and text and moving them around. We used S. Hartley’s implementation,
which is about 1300 lines of code. It comes with a demo program that, among
other things, creates two circles ¢l and ¢2 and calls exchangePosAsync(cl,
c2) and then exchangePos(cl, ¢2). Both methods cause the two circles to
exchange position by sliding across the screen. exchangePosAsync creates a
separate thread to slide them while the original thread proceeds to the next
command. exchangePos lets the calling thread do the work.

Exchanging positions is conceptually a symmetric operation, so a naive
user might just as well have written exchangePos(c2 , cl) as the second com-
mand. This can cause deadlock, because exchangePos and exchangePosAsync
both lock the first argument and then the second argument. We made this
change to the demo program. Without rstest, deadlock did not occur in 200
executions. With rstest, deadlock occurred about once per 17 executions. The
same result was obtained with sleep times of 1 millisec and 2 millisec.

We also applied rstest to the animations of quicksort and dining philoso-
phers that come with Xtango. They contain about 230 and 340 additional
lines of code, respectively. The perturbation to the scheduling caused some
transient peculiarities in the animation of quicksort, which draws a sequence
of boxes, normally erasing each box before drawing the next one. With rstest,
erasure of one edge of a box would sometimes be delayed until after the next
box had been drawn. The dining philosophers behaved normally.

The inserted code had a noticeable effect on the speed of the animation.
For quicksort, elapsed (i.e., wall clock) time for one execution increased from
about 7 seconds for the original program to 31 and 37 seconds with sleep
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times of 1 and 2 millisec, respectively. These elapsed times are for programs
transformed to call the scheduling function but not to monitor for violations
of the classification of unshared objects.

Code inserted to monitor for violations of the classification of unshared
objects caused a slowdown of about 15% in both Xtango and ArgoUML.

7.4 ArgoUML

ArgoUML [1] is an open-source UML-based graphical software design environ-
ment. The core of ArgoUML 0.10 is 4 MB of class files, which use the GEF
Graph Editing Framework (0.8 MB of class files) and libraries for parsing
and data interchange (6 MB of class files). We do not currently have access
to appropriate software for capturing and replaying user input, so we tested
the transformed program with semi-random manual inputs. We used yield
in the scheduling function, because yield caused significantly less slowdown
than sleep.

First, we transformed only the core classes. About 30 minutes of input
produced only some warning messages that also occurred in the original pro-
gram. Next, we transformed GEF as well. Less than 5 minutes of input led
to

java.lang.ClassCastException: org.tigris.gef.presentation.FigRect

at org.argouml.uml.diagram.static_structure.ui.FigClass.createFeatur
eIn(FigClass. java:716)

[ several lines omitted ]

at java.awt.EventDispatchThread.run(EventDispatchThread.java:85)

ArgoUML caught the exception and continued, although mouse clicks in
the graph editing window did not work correctly for a while. The error did
not occur in about 30 minutes of similar input to the original program. This
suggests (but is far from conclusive) that the error is due to rstest’s pertur-
bation to the scheduling. A capture-and-replay mechanism for user input is
needed for more systematic experiments.
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