Collecting Statistics over Runtime Executions

Bernd Finkbeiner, Sriram Sankaranarayanan and Henny Sipma

Computer Science Department, Stanford University
Stanford, CA. 94305

Abstract

By collecting statistics over runtime executions of a program we can answer com-
plex queries, such as “what is the average number of packet retransmissions” in a
communication protocol, or “how often does process P; enter the critical section
while process P» waits” in a mutual exclusion algorithm. We present an extension
to linear-time temporal logic that combines the temporal specification with the col-
lection of statistical data. By translating formulas of this language to alternating
automata we obtain a simple and efficient query evaluation algorithm. We illustrate
our approach with examples and experimental results.

1 Introduction

Runtime verification [13] is a lightweight approach to program safety. Given
a trace of a program execution, we report success if the trace satisfies the
program specification and failure if a fault is detected. There are certain
limitations to this approach. Liveness properties, for example, can never be
falsified on a finite trace. In monitoring applications it is often more helpful
to be warned about indicators of impending failure, such as the number of
packet retransmissions in a network, than about the actual violation.

In this paper, we present an extension to linear-time temporal logic that
combines the temporal specification with the collection of statistical data.
Instead of checking the property “there are only finitely many retransmissions
for each packet”, which is vacuously true over finite traces, we evaluate queries
like “what is the average number of retransmissions” or “what is the maximum
packet delay”, which give a good picture of the current network status.

1 This research was supported in part by NSF(ITR) grant CCR-01-21403, by NSF
grant CCR-99-00984-001, by ARO grant DAAD19-01-1-0723, and by ARPA/AF contracts
F33615-00-C-1693 and F33615-99-C-3014.

Preprint submitted to Elsevier Preprint 8 July 2002

Our queries are constructed from experiments, which form basic observa-
tions at individual trace positions, and aggregate statistics which combine the
results of multiple experiments. This query language is defined in Section 2.
We discuss examples from a communication protocol and a mutual exclusion
algorithm. Next, we develop an automata-theoretic solution for the evalua-
tion of queries. We introduce algebraic alternating automata in Section 4 and
discuss their evaluation over traces. The translation of queries to automata
is described in Section 5. Section 6 concludes with experimental results from
our prototype implementation.

Related Work

Program profiling has a long history, exemplified in popular tools like gprof [11].
However, this research has concentrated mostly on certain specific types of
data like running time and memory leaks. Our approach can be used to de-
velop flexible profiling tools that evaluate user-defined temporal queries.

Runtime verification with linear-time temporal logic has received a grow-
ing attention recently. Examples include the commercial system Temporal
Rover [7], a tool that allows the specifications to be embedded in C, C++,
Java, Verilog and VHDL programs. Runtime verification algorithms have also
been applied in guiding the Java model checker Java PathFinder developed at
NASA [12].

Linear-time temporal logic is a widely used formalism for the specification
and verification of reactive and concurrent systems [15]. For static analysis,
other extensions to quantitative queries have first been studied in the context
of real time systems [8,9]. Recent work along the same lines includes [1,5]. Our
query language can be seen as a generalization of the logic MINMAx CTL [5].

Alternating automata [6] are a generalization of nondeterministic automata
and V-automata [14]. Because of their succinctness they are an efficient data
structure for many problems in specification and verification [19,18]. The
algebraic alternating automata we define in Section 4 are inspired by the
extended alternating automata of [4]. There, extended alternating automata
are used for static Query Checking, which determines the set of propositional
formulas that satisfy a temporal query over a program. Our general framework
for using alternating automata for runtime verification was reported in [10]. In
this paper we concretize the general approach by providing a query language
and a translation from queries to alternating automata.

37

2 Specifying Runtime Statistics

2.1 Programs, States and Traces

In our framework runtime verification consists of posing queries about program
traces. These queries typically contain expressions over program variables, but
they do not further depend on the program or its structure, nor does their
evaluation. Therefore it is sufficient to formalize only the notions of states
and traces.

Let ¥ be a many-sorted algebraic signature and P be a program with a
finite set of variables X. Each variable x € X is assumed to have a fixed sort
Tz A query expression e is a term in the term algebra 7 (%, X). Given a X-
algebra V), a V-state of a program P isamap s : X — V such that each variable
x € X is assigned a value of the right sort in V. We intentionally confuse a
state s with the unique homomorphism s : 7(X,X) — V that extends s.
Therefore, if e is an expression, s(e) is defined by this homomorphism.

An expression with sort boolean is called an assertion. We assume the
existence of an entailment relation E such that a state satisfies an assertion
Y, written s k1, if and only if ¢ is true in s, that is s(+) has value true.

Queries may return a value or they may fail. Therefore we assume that all
sorts contain a special element | to indicate the failure of a query.

Queries are interpreted over program traces. Formally, a (P-)trace o of
length n is a sequence of states sg, s1,...,S,—1. We write (i) to denote the
state s;.

2.2 FEzxperiments

Queries over program traces are constructed from statistical experiments: ex-
pressions that specify a query about the trace at a particular position in the
trace.

Given the X-algebra introduced before, let p be an assertion, ¢ a constant
in 3, § a Y-term, and f and ¢ a unary and binary function in ¥ respectively.
Then if ¢/, and 1), are statistical experiments, so are the following:

o State Expression. p : §, denoting the value of § in the given position, if p
holds at that position, otherwise the experiment is a failure.

» Conjgunction. Y1 Ay 1o, giving the value of g applied to the outcomes of 1,
and 1), provided both ; and vy succeeded, otherwise the experiment is a
failure.

* Disjunction. 1 V4 1o, same as above, except that only one of ¢, and v,
has to succeed for the experiment to succeed.

* Negation. -, denoting the value c if ¢, fails, and considered a failure
otherwise.

38

* Next. Oy 1, denoting the value of f applied to the result of ¢, performed
at the next position in the trace, provided); succeeded.

» Until. Y1Uy1pe, denoting the value of g applied to the result of +; in the
same position and the result of 1), in the first position in which it succeeds,
provided 1); succeeded in all positions up to that point.

More formally, the outcome value of a statistical experiment) over a trace
080,51, -,5n at a position j > 0 is written [¢)](,,), and defined inductively
as follows:

For a state expression:

S]' (5) lf Sj E P
[P 0oy = _
otherwise
where s;(0) is the value of § in s.
For the boolean connectives:
¢ if [1h1] (o) = L
[methi] o) = .
1 otherwise

9([0il@gys [W2log) if [l # L and o]y # L

1 otherwise

(V1 Ng Y2)(o) =

9([W1)(og)s [V2l)) i [Wi)(eg) # L or [o]() # L

1 otherwise

(U1 Vg P2)og) =

For the temporal operators:

f(Wilwgvr) i [i]egey # L

otherwise

[Of Yilg) =

)
9([1)0,5), [W¥2)(ok)) Where k is the least k,j < k <,

such that [¢o]k) # L and

(V1 Ug 2] (0,5) = (k)

[¥1](0yi) # L for every 4, j <i <k, or

1 if no such k exists.

39

In the case of disjunction and the case of the Until operator, one of the
arguments of g may be 1. We assume that g is extended to be defined in this
case.

Example 1. Consider the trace
o: <1’]'>’ <17 2>’ <17 3>’ <2’ 3>7 <57 3>’ <47 3)
where each state (z,y) identifies the values of two integer variables x and y.

The following are simple examples of statistical experiments:

e The value of z in the first state of ¢ if < y holds, expressed by

[z <y : o0

has outcome value L, since the first state does not satisfy z < y.

* The tuple (z,y) in the first state of o if x < y, expressed by

[z <y: (2,90

has outcome value (1, 1).

e The experiment

[(z<y:2) Uy (y=2+2:Y) |©o)

returns 4, the sum of the value of x in the first state and the value of y in
the third state, as (1, 3) is the first state such that y = z + 2 is true.

Remark Note that linear-time temporal formulas with their usual interpre-
tation over traces are a special case of statistical experiments where ¢ has
sort {T, L} for all state expressions, and the operators have the following
associated functions:

/\/\a vVa T, O: z/{’Irz
id

where id is the identity function and 75 is projection onto the second element.

Thus a linear-time temporal formula can be considered a statistical exper-
iment with value T if it holds and value L if it fails, and can therefore also be
used as subformulas in more complex queries. In the remainder of the paper
we will use the usual notation for temporal formulas and omit the term 0 and
the functions associated with the operators.

2.8 Aggregate Statistics

Statistical experiments provide a value for a particular position in the trace.
The outcomes of these experiments can be combined into aggregate statistics
to obtain a value for part of the trace or the full trace. Examples of such

40

aggregate statistics are computing the minimum or maximum value of all
successful experiments on a trace, or the sum of all outcomes, or just a count
of all successfull experiments. We assume that these aggregate statistics can
be computed in an incremental fashion and that the evaluation order, forward
or backward, does not affect the final value. In addition, we assume that all
aggregate statistics return L if and only if all experiments fail.

An aggregate expression is defined as follows. Let ¢ be a statistical experi-
ment, ¢ a statistical experiment with sort boolean, g a binary function, and o
an incrementally computable aggregate function. If ¢); and v, are aggregate
expressions, so are the following:

* Ezperiment: ¢. The value of the aggregate expression is equal to the out-
come of the experiment at a particular position.

» Conjunction: ¢ Ag 1. The values of the aggregate expressions 1; and 1),
are combined as described before for statistical experiments.

* Disjunction: 1 Vg4 2. The values are combined as described above.

* Unconditional Collection: C,11. The aggregate statistic « is applied to all
outcomes of 1; that are not L from the current position until the end of
the trace.

o Interval Collection: V1 Z,. The aggregate statistic « is applied to all out-
comes of 17 that are not L over the maximal interval starting at the current
position and ending when 1) ceases to hold.

Before we present a formal semantics of the last two operators, we show
some examples of incrementally computable statistics, that is, functions «
over traces o : Sg, S1,..., Sy, such that there exists a binary function f, such
that

a(a) = fa(' .. (fa(fa(J—aSn)a Sn—l)a .. ')aSO)

Following are the binary functions that compute the aggregate statistics mini-
mum, mazimum, sum, and count. In the case that both arguments are non-_1:

fm’[;n(xa y) =if x <y then x else y;
fmaz(z,y) =if z <y then y else z;
fy(zy) =z+y
fCOU’ﬂt(x: y) =z +1
For the case that one of the arguments is | the above functions return the

non- L argument, except for f.,,n¢, which returns 1 if the first argument is
1, and the non-L argument if the second argument is L.

Given an incrementally computable statistic a the outcome of an aggregate

41

expression at a position j7 > 0 in trace o is defined as follows

[Ca 1/11](0,]') = fa([Ca "/Jl](a,j—kl) 3 [1/)1](0,]'))

fa(1 Za B0 i1y s [Vilwgy) if (0,7) F@

1 otherwise

[lpl Ia ¢] (0,) =

Sometimes the value of the non-1 argument of a subexpression does not
matter, for example in the scope of a counting aggregate. In the following we
will simply omit the terms and function symbols in this case and assume a
default labeling with a constant 7'.

Example 2. To illustrate the aggregate statistics consider the trace
o:(1,1,2),(1,2,2),(1,3,1),(2,3,1), (5, 3,1), (4, 3,2)

where each triple (x,y, z) identifies the values of three integer variables z, y
and z. Below we show how various questions about this trace can be expressed
as aggregate expressions and what their outcome values are.

* What is the number of positions such that the value of x is the same as the
value of y?

[Ccount (.T = y)](a,O) = COUTLt(T, J—a J—a La J—a —L) =1

Note that the type of the expression here is the default, 7T'.

* What is the minimum value of z + y in the trace?
[Conin (true : +9)]|o0) = min(2,3,4,5,8,7) = 2

* What is the minimum difference between the value of z in some position
where x < y and that in the nearest position where x > y?

Coin((@<y:2) U (z>y:2)ey = min(L,4,4,3,5,L) = 3

where | — | is the absolute difference between the two arguments; if one of
the arguments is L (as is the case here for the fifth element in the sequence),
it is defined to be equal to the non-L argument.

* What is the average value of x + y?
Although this is not directly definable here, we can define the average of a
quantity as the pair of its sum and its count, that is we define

Cavgy = Csp A,y Ceount® -

42

local z :integer where r =1

ly: loop forever do my: loop forever do
-El: noncritical] -mls noncritical]
ly: request r Il my: request r
l3: critical mg: critical
ly: release r my: release r
,PI, ,PQ,

Fig. 1. Program MUX-SEM (mutual exclusion by semaphores)

Then the average value of x + y can be written as

[Cavg(true:z+y) Joo = (29,6)

* What is the maximum number of times that z = 1 inside an interval where
x <y?

[Cmaz((2=1) Teount (z<y))](0,0) = maz(2,2,2,1,1,1) = 2

In the next section we illustrate our specification language with two exam-
ples: a mutual exclusion algorithm and a communication protocol.

3 Examples

To illustrate the collection of statistics of running programs, we present two
well known programs and some examples of relevant statistics for these pro-
grams. The programs are written in the Simple Programming Language (SPL)
of [15], which is a Pascal-like language with constructs for concurrency. State-
ments are labeled to allow explicit reference to control locations.

3.1 Mutual Ezxclusion

Figure 1 shows a simple SPL program that ensures mutually exclusive
access to the critical section of two processes by means of a semaphore[15].
The request statement is enabled only if r is positive, and when executed, it
decrements r by 1. The release statement increments r by 1.

Following are some examples of statistics that can be monitored during
program execution.

43

e Semaphore values: In a correct implementation, the maximum value of r
should not exceed 1. The expression

Cmax (true : 1)

can be used to monitor whether this is indeed the case.

* Mutual Ezclusion: The expression
Cma,x (at_£3 01 V+ at_m3 : 1)

records the maximum number of processes present in the critical section at
any one time. The predicate at_{3 is true when process P; is in location /3;
similarly, at_mgs is true when process P, is in location mg. If the value of
this expression exceeds 1, mutual exclusion is violated.

* Bias: The expression
Ccount(at—£3 ANO —|at_€3) A Ccount(at—m?) ANO _'at—mS)

returns the ratio of the number of visits by P; to the critical section to the
number of visits of P, to the critical section.

* Quertaking: Program MUX-SEM does not put a bound on how often one
process can enter the critical section while the other process is waiting to
enter. In practice, one may want to monitor the number of times a process
is overtaken. The expression

Cmaz ((mat-mz A O(at-ms)) Leoynt (at-Lz))

records the maximum number of times P, visits the critical section during
any period where P; idles at /5.

3.2 Communication Protocol

Figure 2 shows an SPL implementation (adapted from [16]) of the Alternating
Bit Protocol, a communication protocol that guarantees data delivery to the
receiver across a lossy channel, first proposed in [2]. Two processes, a sender
and a receiver execute in parallel. The sender sends data items via the asyn-
chronous data channel dchan; each data item is accompanied by a boolean
value seq (the alternating bit). It then waits for the receiver to send an ac-
knowledgement, consisting of one bit, on the asynchronous acknowledgement
channel achan, or it times out (we assume that statement ¢, is taken a fixed
amount of time after it becomes enabled). If an ack was received and its value
is equal to the seq bit, the sender assumes the data was received and it moves
on to the next data item, simultaneously flipping the value of seq. If no ack
was received, or its value was not equal to seq, the same data item is sent

44

again. The receiver retrieves the data items from dchan. If the accompanying
seq bit is equal to its local ack bit, it accepts the data by moving its pointer
to the next data item, and flips its ack bit. We assume that both achan and
dchan may lose items, but do not corrupt or reorder items.

Following are some example queries on traces of this protocol.

* Throughput: The total number of data items successfully sent, can be ex-
pressed by

CCOUTLt(at_£6 NQO _|0,t_£6)

e Sent vs Received: The number of items sent by the Sender versus the
number of items received by the Receiver is recorded by

Ccount(at—gl NO —|at_€1) /\(.,.) Ccount(at—ml NO ﬁat_ml)

e Mazimum Retransmissions: The maximum number of retransmissions for
any one packet is expressed by

Cma,gj((Cbt_gl A Q(ﬁat_ﬁl)) Icount (—|a,t_£6))

The expression counts the number of times statement /¢; is executed in any
interval in which control does not reside at control location /g, where the
current data item is updated. It then takes the maximum over all intervals.

» Average Retransmissions: The average number of retransmissions per packet
can be expressed by a similar expression

(at_€6 A O _|0,t_€6)
Cavg Ny
true Ur, ((atly A O(—atby)) Legynt (Hat,))

In each position the Until expression evaluates to the number of transmis-
sions performed in the nearest interval where control is not at 5. The
conjunction with at_fg A O —at_fg ensures that we count each interval only
once in computing the average, as the sequence will have a non-1 value
only in the positions where the sender moves to a new data item.

4 Evaluating Statistics

We now turn our attention to the problem of evaluating formulas for a given
trace. Similar to the trace checking methods of [10], we use alternating au-
tomata as an intermediate representation. We define algebraic automata which
produce a value when evaluated over traces. Our construction then consists of
two steps: we first translate the formula into an equivalent automaton; then
we traverse the automaton for the given trace to compute the result. The

45

local dchan : channel |

achan :

local channel |

local data

local

local seq,ack :
local timeout :

fo:

Sender ::

ls:
2% or
ly:
U5

66:

672

timeout

-local recvd
local j
local seq, ack :

Receiver :: my:

my: dchan

meq: if seq
(,

achan

mg:

My

: array [1..] of integer

: integer where 7 = 1

loop forever do

¢y : dchan < (datalil, seq)

if =timeout N ack = seq

(i, seq) == (i + 1, =seq)

1..] of (integer, boolean)

1..] of boolean

boolean where seq = TRUE

boolean where —timeout

achan = ack

timeout := TRUE

:= FALSE

: array [1..] of integer

: integer where j =1

boolean where ack = TRUE

loop forever do

= (recvd|j], seq)
= ack then
ack) = (j + 1, ~ack)

<~ seq

Fig. 2. Program ABP: Alternating bit protocol

46

motivation for this approach is to decouple the evaluation strategy from the
definition of the temporal operators.
We begin with some basic definitions.

4.1 Algebraic Alternating Automata

Definition 1. (Algebraic Alternating Automaton). Let X be a many-sorted
algebraic signature and X be a set of program variables. Let g(z1 : 71,22 :
To) : T be any term of sort 7 over two variables 1 : 71,z : 7o & X, and f(z1)
be a term of sort 7 over one variable x; of sort 7. An algebraic alternating
automaton (AAA) of sort 7 is defined as follows:

A:71 = (p,e) terminal node
with assertion p and e: 7 € T (3, X)
| (A:7, f) transient node
| A:1 Ay A:Ty conjunction
| A:1V,A:7 disjunction

| f(A:7) function application

Note that the sort of any conjunction or disjunction operation of two au-
tomata is the sort of the term g(z;,x2) that annotates the operation.

Example 3. Figure 3 shows an example of an AAA over the signature ¥, con-
taining the single sort nat, a single constant L for the undefined value, and the
functions 7y, ma, f,,;;, and i¢d. Nodes without outgoing edges denote terminal
nodes; nodes with an outgoing edge are transient nodes (A, f), with the edge
leading to A. The diamonds accompanied by an arc denote conjunction of the
two branches and those without an arc denote disjunction.

Definition 2. (Value). Given a trace o : sg,...,S,—1 of length n and a po-
sition i < n, the value of an AAA A is defined by the function eval(A, o, 1),

47

Apy, mo(z1,x2) o

Ay @ Az, frin (@1, 72)

Ay (TS

Fig. 3. Algebraic Alternating Automaton

given as follows

[o(D)](e) i (0,4) kp

1 otherwise

eval ({p, e),0,1) =

eval((Ay, f),0,1) = fleval(Ay,0,i+ 1)) if eval(Ay,0,i+1) # L

1 otherwise

(g(eval(Ay,0,1), eval (A, 0,1))

eval (A1 Ny Az, 0,1) = if eval(Ay,0,i) # L and eval(As, 0,i) # L

N\

\ 1 otherwise

/

g(eval(Ay,0,1), eval(Ay, 0,1))
if eval(Ay,0,i) # L or eval(As,0,1) # L

A\

eval(Ay Vy Ay, 0,1) =

\ 1 otherwise

eval(f(A1),0,i) = f(eval(Ay,0,1))

The value of any automaton is defined to be L at any position outside the
trace, that is, for a trace of length n, any position ¢ > n has value L. Also
note that for function application, f may have the ability to convert a non-_L

value to L and vice-versa.

Example 4. Consider again the automaton A, in Figure 3 and let V be the Y-

48

Positions 0 1 2 3 4 5 6

Assertion p Vv V Vv v
Assertion ¢ Vv Vv Vv Vv Vv
Program State || (3,1) | (1,2) | (2,1) | (2,3) | (0,3) | (6,2) | (1,0)

Fig. 4. Example program trace and satisfaction of assertions p and ¢

Algebra with carrier set A = N'U{L}, where N is the set of natural numbers,
functions 7y (x1,) = 21, ma(1,%2) = Za, fpy4, the minimum function over
integers that gives L if both the arguments are L and the non-_L value if one
of the arguments is |, and id the identity function. We evaluate Ay over the
trace tr shown in Figure 4. The trace shows the values of two variables x and
y in each position and the satisfaction (indicated by /) of two assertions p
and ¢ over the program variables. The evaluation of Ay over tr is computed
as follows

eval (Ag, tr,i) if eval(Ay, tr i) # L
eval(Ay, tr, 1)
il otherwise

tr(s if ¢
eval(Ay, tr, i) r(i)e) it tr(i) p

1 otherwise

eval(Ay, tr, 1) if eval(As,tr,i) # L or eval(Ay, tr,i) # L

1 otherwise

tr(i)(y) iftr(i) E

1 otherwise

{ Fin (eval(As, tr, 1), eval (Aq, tr, 7))
eval(As, tr,1) {

eval (Ag, tr,1) = id(eval(Ao, tr,i+ 1)) = eval (Ao, tr,i + 1)
The outcome values of eval are shown in Figure 5. Notice that the au-

tomaton Ay corresponds to the formula ¢y : Y Lyyin P- As expected, the
outcome values at the positions where p or ¢ is false are |, and the outcome

49

Position [0 |1 |2 |3 (4 |5 |6 |7
Ay 112 L L] L|L]0|L
Ay 3|1 2| L|L|L]|1|L
Ay 112 | L3 |L]0]0|L
As 112 | L3 |L]2]0|L
Ay 2L L LjLj0o|L|L

Fig. 5. The result of eval

values at positions 0, 1, and 6 are the mimimum values of y over the interval
where p is true.

4.2 FEvaluation on Traces

Evaluation can proceed in the forward direction or in the reverse direction.
The former strategy traverses the trace from the beginning to the end. The
automaton is evaluated recursively, as dictated by the equations in Defini-
tion 2. Unfortunately, the complexity of forward evaluation is exponential in
the length of the trace. This can be avoided, as pointed out by Rosu and
Havelund [17], by traversing the trace backwards. We start by assigning the
value L to all nodes of the form (A, f). The value of an automaton at a
position 7 < n depends only on the value of its sub-automata at the same
position or, in case of a node of the form (A, f), on the value of A in the next
position of the trace (if any). Therefore, it is possible to perform a backwards
evaluation while storing the values of all automata at the current and the next
positions only.

5 Translating Specifications to Automata

In this section, we describe the translation of formulas of the query language
to the algebraic alternating automata described in the previous section.

We assume that the algebraic signature X contains a binary function f,
for the incremental computation of each aggregate statistic . In addition, to
model the negation operator, we assume that for each constant ¢ in ¥ there
exists a function negate, defined as

1L ifv#l

¢ otherwise

negate,(v) = {

We also assume that each sort has the identity function #d.

a0

Given a statistical experiment 1, its corresponding AAA A,(%)) is con-
structed as follows.

For a state expression and the boolean connectives:

Aa(t) : €)) = (1,¢))

Aa(hr Ng o) = Aa(thr) Ny Aa(t)
Aa(hr Vg ¥2) = Aa(1) Vg Aa(t)
As(—cth) = negate, (Aa(11))

For the temporal operators:

Aa(Of (@) = (Aa(¥), f)
Aa(thilhy) = f(A1)
with
-Al == (AA(T/)I) /\(wl,ﬁz(xz)) <.A1,Zd>) Vcollect AA(¢2)

where the function collect is defined by

(mi(z1), 22) if 22 # L

T otherwise

collect(xq,x9) =

The first argument z; is a tuple containing the value of ¢); in the current state
and the value of 1, from the 1, state nearest to the next position in the trace.
The second argument z, represents the value of ¥y in the current state. If
there is a non-_L 1), value in the current state, the old value of 1), is discarded
and the current value is chosen.

The construction of the &/ automaton is illustrated in Figure 6. Automaton
A, computes a tuple consisting of the current value of v); and the value of 1y
nearest to the next position in the trace. The node A, computes the same
tuple as A; except that it applies the function f to the tuple as indicated in
the figure.

Given an aggregate expression ¢ the corresponding AAA A4 (v)) is con-
structed as above for conjunction and disjunction. The constructions for the
unconditional and interval collection are as follows:

AaCa(¥)) = Aa(¥) Vi, (Aa(Ca(¥)),id)
As(WIap) = ((As(WIap),id) Vi, Aa(¥)) Arp Aap

ol

Ao s f(A1)

A collect(x1, z2)

/

Az 2 (21, m2(22))

Aa(2)

Fig. 6. Automata construction for 11Us

The constructions of these automata are shown in Figure 7. In the con-
struction of the C, operator, the node labelled with the identity function
id(z1) collects the value of the statistic in the next state of the trace (which
is initialized to L at the end of the trace).

Example 5. Figure 8 shows the AAA for the formula

Cavg(G,t_E(; /\7r2 O ((atll N O _|0,t_a€1) Icount (ﬂat_ﬁﬁ))) s

the formula for calculating the number of retransmissions in the alternating
bit protocol example from Section 3.2.

Ao 0 m1(T1, T2)
0 Ai: fo(T1,T2)

Az : falz1,22)

Aa(y2) @ Aa()
@ Aa(t)

Fig. 7. Automata construction for the operators 11Z,12 (left) and Co1p (right).

92

)0

(z1,22)

feount (@1, 22) I

w1 (71, T2) O
\

negatep(at_£y : T)

Fig. 8. Translation for Cgyglat £e Ar, O((atly A O —atty) Legynt (—at le))]

6 Experimental Results

The evaluation algorithm from Section 4.2 has been implemented in Java,
making use of existing software modules for expression parsing and proposi-
tional simplification available in the STeP (Stanford Temporal Prover) system
[3]. The formulas described in the mutual exclusion and alternating bit proto-
col examples of Section 3.1 along with some other formulas on these examples
were hand translated following the translation described in 5. Traces of vary-
ing length were generated by simulating the SPL programs. At each position
a single step of a randomly chosen process was executed. We then measured
the time taken for evaluation by means of backward evaluation over traces of
varying length. The results are shown in Figure 9. The times were measured
for a 1.7GHz PC, running Redhat Linux v7.0 and Sun JDK 1.4.

Acknowledgements

We would like to thank the anonymous referees for their thorough reading of
our submission and their many constructive comments and suggestions.

23

1000 . . 1000 . . .
overtaking retransmissions
max-time-critical ------- delay-max-packet -------
min-max-r -------- throughput --------
number-in-critical packet-delay
800 800
B
— 600 600
(<) A
£
+~
éo e
.= 400 e 400
=]
=
~
200 S 200
0
10000 20000 30000 40000 50000 10000 20000 30000 40000 50000

trace length [states]

Fig. 9. Running times for queries on the Mutual Exclusion program (left) and the
Alternating Bit Protocol (right).

References

[1] Alur, R., S. L. Torre, K. Ettessami and D. Peled, Parametric temporal logic
for model measuring, in: J. Wiedermann, P. van Emde Boas and M. Nielsen,
editors, ICALP’99, Prague, Czech Republic, LNCS 1644 (1999), pp. 159-168.

[2] Bartlett, K., R. Scantlebury and P. Wilkinson, A note on reliable full-duplez
transmission over half-duplez links, Communications of the ACM 12 (1969),
pp- 260-261.

[3] Bjgrner, N. S., A. Browne, M. Col6n, B. Finkbeiner, Z. Manna, H. B. Sipma and
T. E. Uribe, Verifying temporal properties of reactive systems: A STeP tutorial,
Formal Methods in System Design 16 (2000), pp. 227-270.

[4] Bruns, G. and P. Godefroid, Temporal logic query checking, in: Proc. 16th IEEE
Symp. Logic in Comp. Sci. (2001), pp. 409-417.

[6] Chakrabarti, P., P. Dasgupta, J. Deka and S. Sankaranarayanan, Min-maz
computation tree logic, Artificial Intelligence 127 (2001), pp. 137-162.

[6] Chandra, A. K., D. C. Kozen and L. J. Stockmeyer, Alternation, J. ACM 28
(1981), pp. 114133,

[7] Drusinsky, D., The Temporal Rover and the ATG Rover, in: K. Havelund,
J. Penix and W. Visser, editors, SPIN Model Checking and Software
Verification, Tth Int’l SPIN Workshop, LNCS 1885 (2000), pp. 323-330.

[8] Emerson, A., A. Mok, A. P. Sistla and J. Srinivasan, Quantitative temporal
reasoning, Real Time Systems 4 (1993), pp. 334-351.

o4

[9] Emerson, A. and R. Trefler, Generalized quantitative temporal reasoning: An
automata-theoretic approach, in: TAPSOFT: 7th International Joint Conference
on Theory and Practice of Software Development, 1997.

[10] Finkbeiner, B. and H. Sipma, Checking finite traces using alternating automata,
in: K. Havelund and G. Rosu, editors, Electronic Notes in Theoretical Computer
Science, Electronic Notes in Theoretical Computer Science 55 (2001), pp. 1-17.

[11] Graham, S. L., P. B. Kessler and M. K. McKusick, gprof: a call graph ezecution
profiler, in: SIGPLAN Symposium on Compiler Construction, 1982, pp. 120
126.

[12] Havelund, K., Using runtime analysis to guide model checking of java programs,
in: K. Havelund, J. Penix and W. Visser, editors, SPIN Model Checking and
Software Verification, 7'h Int’l SPIN Workshop, LNCS 1885 (2000), pp. 245
264.

[13] Havelund, K. and G. Rosu, editors, “Runtime Verification 2001,” Electronic
Notes in Theoretical Computer Science 55, Elsevier Science Publishers, 2001.

[14] Manna, Z. and A. Pnueli, Specification and verification of concurrent programs
by V-automata, in: B. Baniegbal, H. Barringer and A. Pnueli, editors, Temporal
Logic in Specification, number 398 in LNCS, Springer-Verlag, Berlin, 1987
pp- 124-164, also in Proc. 14th ACM Symp. Princ. of Prog. Lang., Munich,
Germany, pp. 1-12, January 1987.

[15] Manna, Z. and A. Pnueli, “Temporal Verification of Reactive Systems: Safety,”
Springer-Verlag, New York, 1995.

[16] Manna, Z. and A. Pnueli, “Temporal Verification of Reactive Systems:
Progress,” Springer-Verlag, New York, 1996, draft manuscript.

[17] Rosu, G. and K. Havelund, Synthesizing dynamic programming algorithms from
linear temporal logic formulae, 2001, submitted for publication.

[18] Vardi, M. Y., Alternating automata and program wverification, in: J. van

Leeuwen, editor, Computer Science Today. Recent Trends and Developments,
LNCS 1000, Springer-Verlag, 1995 pp. 471-485.

[19] Vardi, M. Y., An automata-theoretic approach to linear temporal logic, in:
F. Moller and G. Birtwistle, editors, Logics for Concurrency. Structure versus
Automata, LNCS 1043 (1996), pp. 238-266.

35

