

Logic-Based Program Synthesis:
State-of-the-Art and Future Trends

Steve Roach

Department of Computer Science
University of Texas at El Paso

El Paso, Texas 79968
sroach@cs.utep.edu

Abstract
Constructing certifiably reliable software systems is
difficult. Deductive program synthesis techniques (Flener
1995, Manna and Waldinger 1980) can currently be used to
construct small software systems or to organize small sets of
software components in a reliable manner. In order for
synthesis techniques to be applicable to real-world problems
outside the experimental laboratory, they must be
inexpensive relative to manual techniques. The difficulty
and expense in constructing software synthesis systems
currently precludes the use of these techniques in many
instances.

Amphion and Meta-Amphion
Amphion (Stickel, et al. 1994) is a deductive synthesis
system that has been used to construct programs in the
domains of celestial mechanics and avionics. The
experiences gained in the Amphion system mirror
experiences in other synthesis systems. Amphion is a
domain-independent system that is tailored to a domain in
part through the creation of a declarative domain theory.
Problem specifications are solved by programs constructed
of sequences of calls to software components. Program
construction is entirely automated. Programs have been
generated that are currently in use by space scientists
planning observations for the Cassini mission to Saturn
(Roach and Van Baalen 1996, Roach, Lowry, and
Pressburger 1995).

An Amphion domain theory is written in first-order logic
and relates abstract, specification-level functions and
predicates to concrete, implementation-level components.
Specifications for programs are also written in first-order
logic and take the form Forall (inputs) Exists (outputs)
({properties}). A general-purpose resolution theorem
prover finds ground instances of the existential variables
for which the set of properties hold. These ground
instances form functional terms that are translated into a
target language compatible with the existing software
components.

While it is not particularly difficult to create a declarative
domain theory for Amphion that captures the relationships
between the abstract and the concrete, the performance of
the general-purpose resolution theorem prover quickly

degrades due to the exponential behavior of the required
search. Thus, a naive domain theory can only be used to
construct simple programs. In order to synthesize non-
trivial programs, it is necessary to tune the domain theory.
Tuning a domain theory consists of rewriting axioms to
take advantage of knowledge of the implementation of the
theorem prover or incorporating specialized inference
mechanisms (such as decision procedures) that are tied
directly to the theorem prover. Both of these methods
require a high degree of expertise, a great deal of time, and
are quite difficult. While the construction of decision
procedures can be automated to some extent (Van Baalen
and Roach 1998, Roach, Van Baalen, and Lowry 1997,
Roach 97), the integration of these procedures with the
general-purpose theorem prover used in Amphion has been
difficult and un-maintainable.

Difficulties in Program Synthesis
In the past thirty years, a great deal of progress has been
made in the development of program synthesis systems
based on theorem proving, transformations, and logic
programming. However, in spite of this progress, these
techniques are not in the mainstream of software
development. Formal program synthesis techniques, at
least with the current synthesis technologies, are not
appropriate for all software development situations. The
characteristics of inappropriate situations include having
little potential for reuse (to amortize the cost of
constructing the synthesis system) and having a domain or
class of problems that are not well understood.

In situations where it is necessary to prototype a system in
order to answer fundamental questions about the capability
of an approach or to explore domain knowledge, it is much
more difficult to construct a synthesis system than to
construct programs by hand. Many market-driven software
systems fall into this category. Such systems are inherently
difficult to formalize. While some argue that the lack of
formalization is a deficiency on the part of program
developers, it is frequently a necessity. It may be that the
cost of formalizing a specification is too high relative to
the cost of having a human interpret an informal
specification. The translation between informal and formal
(a task we assume to require human oversight) may be

faster at lower levels of abstraction for some problems.
This occurs when relatively simple ideas expressed
informally become difficult to formalize.

Additionally, many synthesis techniques scale badly.
Deductive techniques have exponential behavior. Thus,
while they may work reasonably well for small problems,
they do not work for large problems. There are approaches
to addressing this problem (Roach 1997, Srinivas and
McDonald 1996, Smith 1991); however, it is still difficult
to reuse the work done in one domain to solve problems in
another domain.

The future of program synthesis
By looking at the successes in program synthesis, it is
reasonable to suggest characteristics of situations where
synthesis is appropriate. In order to become a mainstream
technique, synthesis must be advantageous either by
making the software faster to produce, cheaper to produce
and maintain, or of higher quality. The mechanisms for
achieving this include

a) producing code faster via synthesis than by hand
by automating tedious details of development;

b) producing code of higher quality or of higher
certification than hand-development;

c) reducing the level of expertise required for
practitioners to construct software.

The properties of systems amenable to economic
application of synthesis fall into two categories: the simple
and the complex. With simple systems, synthesis relieves
programmers of tedious and repetitive programming tasks.
Just as compilers relieved programmers of the task of
allocating and managing storage, synthesis systems can
alleviate the cumbersome tasks of managing tedious tasks.
One of the advantages of Amphion’s synthesis system is
that a simple algorithm is implemented in a syntactically
correct form. One approach to using Amphion is to create a
program that solves part of a problem, then hand-modify
the resulting code to complete the system. The tedious
work of variable declarations, type checking, and matching
parameters and arguments when combining components is
handled by Amphion. The less-easily specified parts of the
system (such as “display the date and time in a readable
font out of the way of interesting parts of the scene”) are
coded by hand.

Humans have difficulty formulating plans in complex
systems where it is necessary to account for a large number
of interactions (Dorner 1996). It may be theoretically
possible to predict the effect of some action on a system,
but the large number of competing issues prevents humans
from choosing an appropriate action. In software
development, these situations may arise from the
interactions of components. If the interactions can be
specified formally, it may be possible for synthesis systems

to better manage the details of many interactions and
constraints.

While correctness is not ensured solely by the construction
of correctness proofs, such proofs can go a long way in
convincing us that the software will behave as intended.
Proving properties about arbitrary programs is difficult. It
may be easier to prove properties are hold if we control the
construction of the system rather than take arbitrary
programs and attempt to prove properties (Fischer 2001).

Conclusion
In order to reduce the cost of building synthesis systems,
the following must be achieved.

• We must be able to reuse knowledge and theories.
• We must be able to reuse synthesis tools and

techniques.
• We must have a workforce familiar with

techniques and their application.

Although several systems under development have
attempted to address the first two issues, it is still difficult
to port a knowledge base from one application to another.
Many interesting and useful techniques have been
developed, but incorporation of one technique into a
different system is very difficult. Just as component
libraries have facilitated the construction of object-oriented
systems, we must construct synthesis components that can
be matched and tailored to developing systems.

Finally, few computer science and software engineering
professionals are trained to use formal techniques. The
Software Engineering Body of Knowledge (SWEBOK
2001) composed by the IEEE does not have a chapter on
formal methods. Most software engineering textbooks (see
for example (Pfleeger 2001, Pressman 2000, Sommerville
1999)) make only passing mention of formal methods. Few
software engineers are aware of the utility of synthesis
techniques.

References

Dorner, D., 1996. The Logic of Failure, Cambridge, Mass.:
Perseus Press.

Fischer, B., 2001. NASA Ames Research Center, personal
communication.

Flener, P., 1995, Logic Program Synthesis from Incomplete
Information, Norwell, Mass.: Klewer Academic
Publishers.

Manna, Z., and Waldinger, R., 1980. A Deductive
Approach to Program Synthesis, ACM Transactions on
Programming Languages and Systems, 2(1), 90-121.

Pfleeger, S., 2001. Software Engineering Theory and
Practice, Upper Saddle River, N.J.: Prentice-Hall.

Pressman, R., 2000. Software Engineering: A
Practitioner’s Approach, 4th Edition, Boston, Mass.:
McGraw Hill.

Roach, S., Lowry, M., and Pressburger, T., 1995.
Animating Observation Geometries with Amphion. NASA
Information Systems Newsletter, 3(35) 35-38.

Roach, S., and Van Baalen, J., 1996. Automatic Program
Synthesis in Amphion, a Simulation Package for
Evaluating Space Probe Missions. In Proceedings of the
Wyoming Space Grant Symposium, University of
Wyoming.

Roach, S., Van Baalen, J., and Lowry, M., 1997. Meta-
Amphion: Scaling up High Assurance Deductive Program
Synthesis. In Proceedings of the IEEE High Integrity
Software Symposium, 81-93. Albuquerque, New Mexico.

Roach, S., 1997. TOPS: Theory Operationalization for
Program Synthesis, PhD diss., Dept. of Computer Science,
University of Wyoming.

Smith, D., 1991. KIDS: A Knowledge-Based Software
Development System. In Automating Software Design, M.
Lowry and R. McCartney (eds.), 483-514. MIT Press.

Sommerville, I., Software Engineering, 5th Edition,
Reading, Mass.: Addison-Wesley.

Srinivas, Y., and McDonald, J., 1996. The Architecture of
Specware, a Formal Software Development System,
Technical Report, KES.U.96.7, Kestrel Institute, Palo Alto,
Calif.

Stickel, M., Waldinger, R., Lowry, M., Pressburger, T.,
and Underwood, I., 1994. Deductive Composition of
Astronomical Software from Subroutine Libraries. In
Proceedings of the 12th Conference on Automated
Deduction. Nancy, France.

SWEBOK 2001. The Software Engineering Body of
Knowledge, Ironman Version.

Van Baalen, J, and Roach, S., 1998. Using Decision
Procedures to Build Domain-Specific Deductive Synthesis
Systems. In Proceedings of LOPSTR'98 Eighth
International Workshop on Logic Program Synthesis and
Transformation. Manchester, UK.

