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Abstract

A high-level abstract-datatype-basedconstraint modelling
languageopensthe door to an automatableempiricaldeter-
mination — by a synthesiser— of how to ‘best’ represent
the decisionvariablesof a combinatorialoptimisationprob-
lem,basedon(real-life) traininginstancesof theproblem.In
the extremecasewhereno suchtraining instancesare pro-
vided,suchasynthesiserwould simplybenon-deterministic.
A first-orderrelationalcalculusis agoodcandidatefor sucha
language,asit givesriseto verynaturalandeasy-to-maintain
modelsof combinatorialoptimisationproblems.

Introduction
Combinatorial optimisation problems areincreasinglyubiq-
uitousandcrucial in industry. Indeed,stayingcompetitive
in theglobalNew Economyrequirestheefficientmodelling
andsolving of suchproblems,whoseinstancesaregetting
largerandharder. Examplesareproductionplanningsubject
to customerdemandandresourceavailability so that sales
aremaximised,andair traffic control subjectto safetypro-
tocolssothatflight timesareminimised.Appropriatevalues
for thedecisionvariableshave to be foundwithin their do-
mains,subjectto someconstraints,suchthatsomeoptional
objectivefunctionon thesevariablestakesanoptimalvalue.

In recentyears,modellinglanguagesbasedonsomelogic
with setsand relationshave gainedpopularity in formal
methods,witnessthe B [1] and Z [10] specificationlan-
guages,the ALLOY [6] objectmodellinglanguage,andthe
Object ConstraintLanguage(OCL) of UML. In database
modelling, this had been long advocated, most notably
via entity-relation-attribute (ERA) diagrams. We examine
whetherconstraintmodellingcanbenefitfrom theseideas.

Sets and set expressionsrecently startedappearingas
modelling devices in some constraintprogramminglan-
guages,with setvariablesoften implementedby thesetin-
terval representation[5]. In theabsenceof suchanexplicit
setconcept,modellersusuallyrepresenta setvariableasan
arrayof 0/1 integervariables,indexedby thedomainof the

�
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set.In termsof propagation,thesetinterval representationis
equivalentto the 0/1 representation,which consumesmore
memorybut is ableto supportmoresetexpressionsandcon-
straints.Both representationsarerestrictedto finite sets.

Relationshave not received much attentionyet in con-
straint programminglanguages,except the particularcase
of a total function,via arrays.Indeed,a total function

�
can

berepresentedasa 1-d arrayof variablesover the rangeof�
, indexedby its domain,or asa 2-d arrayof 0/1 variables,

indexedby thedomainand rangeof
�

, or evenwith somere-
dundancy, aslong aschannellingconstraintsrelatetheparts
of the redundantrepresentation.Other than retrieving the
(unique)imageundera total functionof a domainelement,
therehasbeenno supportfor relationalexpressions.

We claim thata high-level constraintmodellinglanguage
with abstractdatatypes(for sets,relations,andsequences)
opensthedoorto anautomatableempiricaldetermination—
by a synthesiser— of how to ‘best’ representthe decision
variablesof acombinatorialoptimisationproblem,basedon
(real-life) training instancesthereof. In the extremecase
whereno suchtraining instancesareprovided,sucha syn-
thesiserwouldsimplybenon-deterministic.A suitablefirst-
orderrelationalcalculusis a goodcandidatefor sucha lan-
guage,asit givesrise to very naturalandeasy-to-maintain
modelsof combinatorialoptimisationproblems.

We hereignoretheissueof how to parameterisea solver,
sayby providing a suitablelabelling heuristic,towardsthe
solving of the modelledproblem. For non-expert or lazy
modellers,this taskcanalsobeleft to synthesisers[7,8]. We
thushereonly aim at techniquesthat find the ‘best’ model
for a given solver, underits default settings.

Relational Modelling with ESRA

Design Decisions. In constraintsatisfaction, much more
effort hasbeendirectedat efficiently solvingtheconstraints
thanat facilitatingtheirmodelling.Constraintprogramming
languagesreflectthis,astheircontrolstructuresandvariable
representationoptionsareusuallyquitelow-level.

Thekey designdecisionsfor ourconstraintmodellinglan-
guage— called ESRA — areasfollows. We want to cap-
turecommonmodellingidioms in abstractdatatypes,espe-
cially for relations,so as to designa truly high-level lan-
guage.Computationalcompletenessis notaimedat,aslong
asthenotationis usefulfor elegantlymodellingalargenum-



berof combinatorialoptimisationproblems.We (currently)
donot� supportprocedures,andhencenoprocedurecallsand
no recursion. Similarly, we focus on finite domains,and
supportonly boundedquantification.In orderto maximally
sugarthefirst-order-logic natureof thelanguage,weadopta
‘lower-128ASCII ’ syntax,unliketheLATEX-requiringsyntax
of Z, aswell asa JAVA-style declarationof the universally
quantifiedvariables.For reasonsof space,we hereonly in-
troducetheconceptsof ESRA thatareactuallyillustratedin
this paper. Also, we can“only” giveaninformal semantics.
Thereadermaymonitorwww.csd.uu.se/� pierref/astrafor a
completedescriptionof thefull language.

Modelling the Data. A primitive type iseitherafinite enu-
merationof new constantidentifiers,or afinite rangeof inte-
gers,indicatedby its lowerandupperbounds.Theonly pre-
definedprimitive typesaretherangesnat andint , which
are0:maxint and-maxint:maxint , respectively, with
maxint beingthemaximumrepresentableinteger.

Relations are declared using the # relation type-
constructor. Considerthe relationtypeA m:n # p:q B.
ThenA andB mustbe primitive types,designatingthe two
participantsof any relationof this type,with A beingcalled
the domain and B the range of sucha relation. The sec-
ond and third argumentsof # are multiplicities, with the
following semantics:for every elementof A, therearebe-
tweenmandn elementsof B, andfor every elementof B,
therearebetweenp andq elementsof A in sucha relation.
We thus(currently)restrictthefocusto binary relations,be-
tweenprimitive typesonly. For partial andtotal functions,
m:n is 0:1 and1:1 , respectively. For injections,surjec-
tions, andbijections,p:q is 0:1 , 1:maxint , and1:1 ,
respectively. Ratherthanelevating functionsandtheir par-
ticularcasesto first-classconceptswith aspecificsyntax,we
preferkeepingthe notationleanandleave their specialised
handlingto the synthesiser. This hasthe further advantage
thatonly themultiplicitiesneedto bechangedduringmodel
maintenance,saywhena functionbecomesa relation.

(Arraysof) instance-datavariablesaredeclaredin a JAVA-
stylestronglytypedsyntax.All instancedataarereadin at
run-timefrom adatafile. Decisionvariabledeclarationsfol-
low thesamesyntax,but areprecededby thevar keyword.
The usageof arraysof decisionvariables,thoughpossible,
is sometimesdiscouraged,asthey mayamountto a prema-
ture commitmentto a low-level representationof what es-
sentiallyarerelations. Due to the (current)restrictionson
relations,arraysarenot aredundantfeature.All declarations
denoteuniversally quantifiedvariables,with the instance-
dataonesexpectedto begroundat solving-timeandthede-
cisiononesexpectedto still bevariablesthen.

Modelling the Cost Function and the Constraints. Ex-
pressionsareconstructedin theusualway. Theusualarith-
meticoperatorsareavailable,suchascard for thecardinal-
ity of a setexpression,ord for thepositionof an identifier
in anenumeration,andsum for thesumof a bounded(and
possiblyfiltered)numberof numericexpressions.Let R be
a relationof type A m:n # p:q B. For any element(or

subset)a of A, the navigation expressiona.R designates
the relationalimageof a, that is the possiblyemptysetof
all elementsin B that arerelatedby R to (any elementin)
a. If m:n is 1:1 , thena.R simply designatesthe(unique)
elementof B that is relatedto elementa of A. The relation
expression� Rdesignatesthetransposerelationof R, which
is thusof type B p:q # m:n A. The elementsof a rela-
tion arerepresentedasa#b pairs.

First-orderlogic formulasarealsoconstructedin theusual
way. Atomsarebuilt from expressionswith theusualpredi-
cates,suchastheinfix in for setor relationmembershipand
the infix ‘<=’ for the ‘ � ’ inequalitybetweennumericex-
pressions.Formulasarebuilt from atomswith theusualcon-
nectivesandquantifiers,suchasnot for negation,theinfix
‘&’ and‘=>’ for conjunctionandimplication,andforall
andexists for bounded(andpossiblyfiltered) universal
andexistentialquantification.Theusualtyping,association,
andprecedencerulesapply.

The cost function is a numericexpressionthat hasto be
eitherminimisedor maximised.Theconstraints on thede-
cisionvariablesarea conjunctionof formulas.

The Warehouse Location Problem
A company considersopeningwarehouseson somecandi-
datelocationsto supplyits existing stores.Eachcandidate
warehousehasthe samemaintenancecost,and the supply
costto a storedependson the warehouse.Eachstoremust
besuppliedby exactly onewarehouse( � � ). Eachcandidate
warehousehasacapacitydesignatingthemaximumnumber
of storesit cansupply( � � ). The objective is to determine
which warehousesto open,andwhich of thesewarehouses
shouldsupply the variousstores,suchthat the sumof the
maintenanceandsupplycostsis minimised.In moremathe-
maticalterms,thesoughtsupplyrelationshipis a total func-
tion from thesetof storesinto thesetof warehouses,andthe
setof warehousesto beopenedis therange of thatfunction.

This problemwasfirst modelledasa constraintprogram
in thereferencemanualof ILOG SOLVER 4.0 (in 1997),and
then modelledin OPL [11]. There,the soughttotal func-
tion is modelledby a 1-d arrayof variablesrepresentingthe
(unique)warehousethatsupplieseachstore,therebycaptur-
ing the constraint� � . The setof warehousesto be opened
is modelledin a redundantway (becauseit would suffice to
retrieve the rangeof that function), namelyasa 1-d array
OWof 0/1 variables,suchthatOW[w] is 1 if f warehousew
is opened.A channellingconstraintis thennecessary, ex-
pressingthat a warehousethat is actually supplyingsome
storemustbe opened.Thecostfunctionandconstraint� �
can only be expressedin a low-level way, namelyby re-
interpretingtheBooleansof OWandthetruthvaluesof local
constraintsasnumericweights. Thingsbecomeevenmore
awkwardif we non-redundantlymodelthesupplyfunction,
namelyjust by the 1-d array of variablesrepresentingthe
warehousethat supplieseachstore. On the instancedata
we tried, this modelis actuallyanorderof magnitudemore
efficient (by all measures)thanthe publishedone,but it is
muchlessreadable.Thisshowsthatredundancy elimination
may pay off in performance,but it may just aswell be re-



nat MaintCost
enum Warehouses, Stores
nat Capacity[Warehouses],

SupplyCost[Stores,Warehouses]
var Stores 1:1 # nat Warehouses Supply // C1
minimise

sum(s#w in Supply) SupplyCost[s,w]
+ card(Stores.Supply) * MaintCost

subject to {
forall(w in Warehouses) // C2

card(w.˜Supply) <= Capacity[w] }

Figure1: TheWarehouseLocationproblem

Hal Jim Bob
Nat 1 2 3
Eve 2 3 1
Pat 3 2 1

Nat Eve Pat
Hal 3 1 2
Jim 3 1 2
Bob 3 2 1

Figure 2: Rankingsof the womenfor the men (left), and
rankingsof themenfor thewomen(right)

dundancy introduction.But this is hardto guess,ashuman
intuition maybeweakhere.

Figure 1 shows an ESRA model of the problem. The
soughtsupplyrelationshipis modelledasarelationandcon-
strainedto bea total functionfrom thestoresinto theware-
houses,therebycapturingconstraint � � . The eleganceof
the cost function reflectsthe freedomfrom representation
choices,with thenavigationexpressionStores.Supply
retrieving thesetof warehousesthatareto beopened.The
only constraintgracefullycaptures� � , usingthenavigation
expressionw. � Supply to retrieve the set of storesthat
warehousew supplies. From this model, lower-level mod-
elscanbesynthesised,includingtheonesdiscussedabove.

The Stable Marriage Problem
Original Version. Considera dating agency where an
equalnumber	 of womenandmenhave signedup andare
willing to marryany opposite-sex personof thegroup.They
have ranked all possiblespousesby decreasingpreference.
Figure2 hassampleinstancedata,wherealowerrankmeans
a higherpreference.For instance,Hal is Nat’s first choice,
but it is Eve who is Hal’s first choice. The objective is to
matchup the womenandmen suchthat all marriagesare
stable. A marriageis stable if, whenever spouse
 prefers
someotherpartner, this partnerprefersher/hisspouseto 
 .
So 
 maybeunhappy, but s/heis boundto staywith her/his
spouse.In moremathematicalterms,the soughtmarriages
form a bijection betweenthesetsof womenandmen.

This problemwasfirst modelledasa constraintprogram
in thereferencemanualof ILOG SOLVER 4.0(in 1997),and
then modelledin OPL in a significantly simplerway [11].
Themarriagesaremodelledin aredundantway, via two 1-d
arraysof variablesrepresentingthe(unique)husbandof each
womanandthe(unique)wife of eachman,respectively. A
channellingconstraintis necessaryto ensurethatboth total
functionsarethe inverseof eachother, that is to achieve a
bijection. To achieve betterpropagation,this channelling

enum Women, Men
nat RankW[Women,Men], RankM[Men,Women]
var Women 1:1 # 1:1 Men Marriage // bij.
solve {

forall(w#m, p#o in Marriage) {
RankW[w,o] < RankW[w,m] // stability 1

=> RankM[o,p] < RankM[o,w]
& RankM[m,p] < RankM[m,w] // stability 2

=> RankW[p,o] < RankW[p,m] } }

Figure3: TheoriginalStableMarriageproblem

constraintis expressedfor both functions,requiring every
personto beidenticalto thespouseof their spouse.

A secondmodelwould non-redundantlymodelthe mar-
riages,namelyby a singletotal function,that is a 1-d array
of variablesrepresentingthewife of eachman,say. To en-
forcethebijectivenessof this function,all variablesarecon-
strainedto bedifferent.Thismodelis probablylessefficient,
andthis hasbeenthecasewith theinstancedatawe tried.

A third modelwould modelthe marriagesin a 2-d array
Marriage of 0/1 integervariables,indexedby thewomen
and men, so that Marriage[w,m] is 1 if f womanw is
marriedto manm. Two bijectivenessconstraintsareneces-
saryto enforcethatevery personhasexactly onespouse,so
that thereis exactly one1 in eachrow andin eachcolumn.
This model is probablylessefficient than the secondone,
andthis hasbeenthecasewith theinstancedatawe tried.

Figure3 showsanESRA modelof theproblem.Themar-
riagesaremodelledasarelationover thesetsof womenand
men,suchthatit is abijection.Fromthismodel,lower-level
modelscanbesynthesised,includingtheonesabove,using
thevariouswaysof representingrelations,andexploiting in-
sightsgainedfrom thoroughstudiesof bijections[9,12].

Model Maintenance. Relationsandtheir particularcases
(partialfunctions,total functions,injections,surjections,bi-
jections,andso on) area single, powerful conceptfor ele-
gantly modellingmany aspectsof combinatorialoptimisa-
tion problems.Also, therearenot too many different,and
evenstandard, waysof representingrelationsandrelational
expressions.Therefore,weadvocatethatthesynthesisercan
actuallymake a (systematic)empiricalevaluationof candi-
daterepresentations,using (real-life) training instancesof
theproblem.In theabsenceof suchtraininginstances,such
a synthesiserwould simply benon-deterministic.Also, the-
oreticalstudiessuchas[12] shouldbe madefor particular
casesof relationsin orderto obtainrulesstatingwhenarep-
resentationis advisableandwhennot, therebyreducingthe
volumeof suchempiricalstudiesby synthesisers.

Model maintenanceat the high ESRA level reducesto
adaptingto thenew problemandre-synthesising,asall rep-
resentation(andthussolving) issuesareleft to the synthe-
siser. At lower levels,modelmaintenanceis quite tedious,
as the early if not uninformedrepresentationchoiceshave
to be taken into accountandas the lower-level notationis
more awkward. Worse,a representationchange,a redun-
dancy elimination, or a redundancy introduction (suchas



enum Women, Men
nat RankW[Women,Men], RankM[Men,Women]
var Women 1:3 # 0:1 Men Marriage
solve {

forall(w#m in Marriage) {
forall(o in Men) // stability 1

RankW[w,o] < RankW[w,m] =>
exists(p in Women: p#o in Marriage)

RankM[o,p] < RankM[o,w]
& forall(p in Women) // stability 2

RankM[m,p] < RankM[m,w] =>
forall(o in Men: p#o in Marriage)

RankW[p,o] < RankW[p,m] } }

Figure4: ThePolyandricStableMarriageproblem

a model integrationor the additionof implied constraints)
may“haveto” beoperated,becauseit is unlikely that,for the
consideredtraininginstancesor in general,the‘best’ repre-
sentationis thesamefor bijectionsasfor full relations,say.

Suchre-synthesisis alsonecessarywhenthedistribution
of instancesonwhichthemodelis deployedbecomesdiffer-
ent from the trainingdistribution usedwhenthemodelwas
formulated.But themodellermaybeunwilling or unableto
do this experimentationfor finding the‘best’ model,or s/he
maybeunawareof insightsgainedfrom ageneralempirical
study, suchason how to ‘best’ modelbijections[9].

Polyandry Version. Imaginea countrywherethe law al-
lowswomento marryup to 3 men,but menmaymarryonly
1 woman.Alsoconsiderthatall womenwhosignedupatthe
agency needto marry. Thesoughtmarriagesnow form afull
relation betweenthesetsof womenandmen.A polyandric
marriageis stable if, whenever spouse
 preferssomeother
partner, this partneris married,and s/heprefersall her/his
spousesto 
 . If at leastasmany menaswomenhavesigned
up at theagency, theproblemremainsa decisionproblem.

Figure 4 shows an ESRA model of this new problem.
Themultiplicitieswerechanged,andthestabilityconstraints
wererephrasedto reflectthenew definition. (Thesamesta-
bility constraintscould actuallyalsohave beenusedin the
model of Figure 3, becausethe new definition of stability
implies the original onein its context.) Themodelmainte-
nancewasindeedunburdenedby representationissues.

Conclusion
Related Work. This researchowesa lot to previouswork
onrelationalmodellingin formalmethodsandonERA-style
semanticdata modelling, especiallyto the ALLOY object
modellinglanguage[6], whichitself gainedmuchfrom theZ
specificationnotation[10] (andlearnedfrom UML/OCL how
not to do it). Contraryto ERA modelling,we do not distin-
guishbetweenattributesandrelations.

In constraintprogramming,OPL [11] standsout as a
medium-level constraintmodelling language,and ALMA
[2] is also becominga very powerful notation,on top of
MODULA-2. Our ESRA languageshareswith themthequest
for a practicaldeclarative modelling languagebasedon a

strongly-typed(full) first-orderlogic with arrays(andwith
the look of an imperative language),while dispensingwith
suchhard-to-properly-implement andrarely-necessary(for
constraintmodelling)‘luxuries’ asrecursionandunbounded
quantification.As shown, ESRA evengoesbeyondthem,by
advocatinganabstractview of relations.

Current and Future Work. Our ESRA languageis anex-
tensionof a streamlined(significant)subsetof OPL. A pro-
totype ESRA-to-OPL synthesiser[4] hasbeenimplemented
by SimonWrang. The semanticsof ESRA will be given in
animplementation-independent way, in two layers.Indeed,
somefeaturesof ESRA are just syntacticsugarfor combi-
nationsof (a few) kernelfeatures,hencewe will provide an
operationalsemantics(by rewrite rules) for the non-kernel
features,anda set-orienteddenotationalsemanticsfor the
kernel features. We can then tackle the joint considera-
tion of the modellingandthe solver parameterisation.The
synthesiserwill also benefitfrom our work on symmetry-
reducing/breakingconstraints[3]. A graphicallanguagecan
bedevelopedfor thevariablemodelling,includingthemulti-
plicity constraintsonrelations,sothatonly thecostfunction
andtheotherconstraintsneedto betextually expressed.
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